\[\boxed{\mathbf{975}\mathbf{.}}\]
\[1)\ f(x) = 6x^{2} - x^{3}\]
\[f^{'}(x) = 6 \bullet \left( x^{2} \right)^{'} - \left( x^{3} \right)^{'} =\]
\[= 6 \bullet 2x - 3x^{2} = 12x - 3x^{2};\]
\[f^{''}(x) = (12x)^{'} - 3 \bullet \left( x^{2} \right)^{'} =\]
\[= 12 - 3 \bullet 2x = 12 - 6x.\]
\[Точки\ перегиба:\]
\[12 - 6x = 0\]
\[2 - x = 0\ \]
\[x = 2.\]
\[Ответ:\ \ x = 2.\]
\[2)\ f(x) = 3x^{2} + 4x^{3}\]
\[f^{'}(x) = 3 \bullet \left( x^{2} \right)^{'} + 4 \bullet \left( x^{3} \right)^{'} =\]
\[= 3 \bullet 2x + 4 \bullet 3x^{2} = 6x + 12x^{2};\]
\[f^{''}(x) = (6x)^{'} + 12 \bullet \left( x^{2} \right)^{'} =\]
\[= 6 + 12 \bullet 2x = 6 + 24x.\]
\[Точки\ перегиба:\]
\[6 + 24x = 0\]
\[1 + 4x = 0\ \]
\[x = - 0,25.\]
\[Ответ:\ \ x = - 0,25.\]