\(\boxed{\mathbf{970}\mathbf{.}}\)
\[1)\ y = \frac{2}{x^{2} - 4} = \frac{2}{(x - 2)(x + 2)}\]
\[\textbf{б)}\ y^{'}(x) = \left( x^{2} - 4 \right)^{'} \bullet \left( \frac{2}{u} \right)^{'} =\]
\[= 2x \bullet \left( - \frac{2}{u^{2}} \right) = - \frac{4x}{\left( x^{2} - 4 \right)^{2}};\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[- 4x = 0\ \]
\[x = 0.\]
\[\textbf{г)}\ y(0) = \frac{2}{0^{2} - 4} = - \frac{2}{4} = - \frac{1}{2}.\]
\[\textbf{д)}\ Уравнение\ горизонтальной\ \]
\[асимптоты:\]
\[y = \lim_{x \rightarrow \infty}\frac{2}{x^{2} - 4} = \lim_{x \rightarrow \infty}\frac{\frac{2}{x^{2}}}{1 - \frac{4}{x^{2}}} =\]
\[= \frac{0}{1 - 0} = 0.\]
\[\textbf{е)}\ Возрастает\ \]
\[на\ ( - \infty;\ - 2) \cup ( - 2;\ 0)\ и\ \]
\[убывает\ на\ (0;\ 2) \cup (2;\ + \infty);\]
\[x = 0 - точка\ максимума.\]
\[\textbf{ж)}\ \]
\[x\] | \[x < - 2\] | \[- 2 < x < 0\] | \[0\] | \[0 < x < 2\] | \[x > 2\] |
---|---|---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[+\] | \[0\] | \[-\] | \[-\] |
\[f(x)\] | \[\nearrow\] | \[\nearrow\] | \[- 0,5\] | \[\searrow\] | \[\searrow\] |
\[2)\ y = \frac{2}{x^{2} + 4}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) = \left( x^{2} + 4 \right)^{'} \bullet \left( \frac{2}{u} \right)^{'};\]
\[y^{'}(x) = 2x \bullet \left( - \frac{2}{u^{2}} \right) =\]
\[= - \frac{4x}{\left( x^{2} + 4 \right)^{2}};\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[- 4x = 0\ \]
\[x = 0.\]
\[\textbf{г)}\ y(0) = \frac{2}{0^{2} + 4} = \frac{2}{4} = \frac{1}{2}.\]
\[\textbf{д)}\ Уравнение\ горизонтальной\ \]
\[асимптоты:\]
\[y = \lim_{x \rightarrow \infty}\frac{2}{x^{2} + 4} = \lim_{x \rightarrow \infty}\frac{\frac{2}{x^{2}}}{1 + \frac{4}{x^{2}}} =\]
\[= \frac{0}{1 + 0} = 0.\]
\[\textbf{е)}\ Возрастает\ на\ ( - \infty;\ 0)\ и\ \]
\[убывает\ на\ (0;\ + \infty);\]
\[x = 0 - точка\ максимума.\]
\[\textbf{ж)}\ \]
\[x\] | \[x < 0\] | \[0\] | \[x > 0\] |
---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[-\] |
\[f(x)\] | \[\nearrow\] | \[0,5\] | \[\searrow\] |
\[3)\ y = (x - 1)^{2} \bullet (x + 2)\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[3x^{2} - 3 = 0\]
\[x^{2} - 1 = 0\]
\[(x + 1)(x - 1) = 0\]
\[x_{1} = - 1\ и\ x_{2} = 1.\]
\[\textbf{г)}\ y( - 1) =\]
\[= ( - 1 - 1)^{2} \bullet ( - 1 + 2) =\]
\[= ( - 2)^{2} \bullet 1 = 4;\]
\[y(1) = (1 - 1)^{2} \bullet (1 + 2) =\]
\[= 0^{2} \bullet 3 = 0.\]
\[\textbf{д)}\ Возрастает\ \]
\[на\ ( - \infty;\ - 1) \cup (1;\ + \infty)\ и\ \]
\[убывает\ на\ ( - 1;\ 1);\]
\[x = 1 - точка\ минимума;\ \]
\[x = - 1 - точка\ максимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < - 1\] | \[- 1\] | \[- 1 < x < 1\] | \[1\] | \[x > 1\] |
---|---|---|---|---|---|
\[f^{'}(x)\] | \[+\] | \[0\] | \[-\] | \[0\] | \[+\] |
\[f(x)\] | \[\nearrow\] | \[4\] | \[\searrow\] | \[0\] | \[\nearrow\] |
\[4)\ y = x \bullet (x - 1)^{3}\ \]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ y^{'}(x) =\]
\[= (x)^{'} \bullet (x - 1)^{3} + x \bullet {(x - 1)^{3}}^{'};\]
\[y^{'}(x) =\]
\[= 1 \bullet (x - 1)^{3} + x \bullet 3(x - 1)^{2} =\]
\[= (x - 1)^{2} \bullet (x - 1 + 3x) =\]
\[= (x - 1)^{2} \bullet (4x - 1).\]
\[\textbf{в)}\ Стационарные\ точки:\]
\[(x - 1)^{2} \bullet (4x - 1) = 0\]
\[x_{1} = 1\ и\ x_{2} = \frac{1}{4}.\]
\[\textbf{г)}\ y\left( \frac{1}{4} \right) = \frac{1}{4} \bullet \left( \frac{1}{4} - 1 \right)^{3} =\]
\[= \frac{1}{4} \bullet \left( - \frac{3}{4} \right)^{3} = - \frac{27}{256};\]
\[y(1) = 1 \bullet (1 - 1)^{3} = 1 \bullet 0^{3} = 0.\]
\[\textbf{д)}\ Возрастает\ на\ \left( \frac{1}{4};\ + \infty \right)\ и\ \]
\[убывает\ на\ \left( - \infty;\ \frac{1}{4} \right);\]
\[x = \frac{1}{4} - точка\ минимума.\]
\[\textbf{е)}\ \]
\[x\] | \[x < 0,25\] | \[0,25\] | \[0,25 < x < 1\] | \[1\] | \[x > 1\] |
---|---|---|---|---|---|
\[f^{'}(x)\] | \[-\] | \[0\] | \[+\] | \[0\] | \[+\] |
\[f(x)\] | \[\searrow\] | \[- \frac{27}{256}\] | \[\nearrow\] | \[0\] | \[\nearrow\] |