\[\boxed{\mathbf{954}\mathbf{.}}\]
\[1)\ f(x) = (x + 1)^{4}\]
\[f^{'}(x) = {(x + 1)^{4}}^{'} = 4 \bullet (x + 1)^{3};\]
\[f^{''}(x) = 4 \bullet {(x + 1)^{3}}^{'} =\]
\[= 4 \bullet 3(x + 1)^{2} = 12(x + 1)^{2}.\]
\[Функция\ выпукла\ вниз:\]
\[(x + 1)^{2} > 0\]
\[x + 1 \neq 0\ \]
\[x \neq - 1.\]
\[Ответ:\ \ ( - \infty;\ - 1) \cup ( - 1;\ + \infty).\]
\[2)\ f(x) = x^{4} - 6x^{2} + 4\]
\[f^{'}(x) = \left( x^{4} \right)^{'} - 6 \bullet \left( x^{2} \right)^{'} + (4)^{'};\]
\[f^{'}(x) = 4x^{3} - 6 \bullet 2x + 0 =\]
\[= 4x^{3} - 12x.\]
\[f^{''}(x) = 4 \bullet \left( x^{3} \right)^{'} - (12x) =\]
\[= 4 \bullet 3x^{2} - 12 = 12x^{2} - 12.\]
\[Функция\ выпукла\ вниз:\]
\[12x^{2} - 12 > 0\]
\[x^{2} - 1 > 0\]
\[x^{2} > 1\]
\[x < - 1\ или\ x > 1.\]
\[Ответ:\ \ выпукла\ вниз\ на\ \]
\[( - \infty;\ - 1) \cup (1;\ + \infty);\]
\[выпукла\ вверх\ на\ ( - 1;\ 1).\]
\[3)\ f(x) = \left( x^{2} - 3x + 2 \right) \bullet e^{x}\]
\[= \left( x^{2} + x - 2 \right) \bullet e^{x}.\]
\[Функция\ выпукла\ вниз:\]
\[x^{2} + x - 2 > 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 - 3}{2} = - 2;\text{\ \ }\]
\[x_{2} = \frac{- 1 + 3}{2} = 1.\]
\[(x + 2)(x - 1) > 0\]
\[x < - 2\ или\ x > 1.\]
\[Ответ:\ \ выпукла\ вниз\ \]
\[на\ ( - \infty;\ - 2) \cup (1;\ + \infty);\]
\[выпукла\ вверх\ на\ ( - 2;\ 1).\]
\[4)\ f(x) = x^{3} - 6x \bullet \ln x\]
\[f^{'}(x) = 3x^{2} - 6 \bullet \ln x - 6x \bullet \frac{1}{x} =\]
\[= 3x^{2} - 6 \bullet \ln x - 6.\]
\[f^{''}(x) =\]
\[= 3 \bullet \left( x^{2} \right)^{'} - 6 \bullet \left( \ln x \right)^{'} - (6)^{'};\]
\[f^{''}(x) = 3 \bullet 2x - 6 \bullet \frac{1}{x} - 0 =\]
\[= 6 \bullet \left( x - \frac{1}{x} \right).\]
\[Функция\ выпукла\ вниз:\]
\[x - \frac{1}{x} > 0\]
\[x^{3} - x > 0\]
\[x \bullet \left( x^{2} - 1 \right) > 0;\]
\[(x + 1) \bullet x \bullet (x - 1) > 0\]
\[- 1 < x < 0\ или\ x > 1.\]
\[Выражение\ имеет\ смысл\ \]
\[при\ x > 0.\]
\[Ответ:\ \ выпукла\ вниз\ \]
\[на\ (1;\ + \infty);\]
\[выпукла\ вверх\ на\ (0;\ 1).\]