\[\boxed{\mathbf{905}\mathbf{.}}\]
\[1)\ y = x - \sin{2x}\]
\[y^{'}(x) = (x)^{'} - \left( \sin{2x} \right)^{'} =\]
\[= 1 - 2\cos{2x}.\]
\[Промежуток\ убывания:\]
\[1 - 2\cos{2x} < 0\]
\[2\cos{2x} > 1\]
\[\cos{2x} > \frac{1}{2}\]
\[- \frac{\pi}{3} + 2\pi n < 2x < \frac{\pi}{3} + 2\pi n\]
\[- \frac{\pi}{6} + \pi n < x < \frac{\pi}{6} + \pi n.\]
\[Ответ:\ \ возрастает\ \]
\[на\ \left( \frac{\pi}{6} + \pi n;\ \frac{5\pi}{6} + \pi n \right);\]
\[убывает\ на\ \left( - \frac{\pi}{6} + \pi n;\ \frac{\pi}{6} + \pi n \right).\]
\[2)\ y = 3x + 2\cos{3x}\ \]
\[y^{'}(x) = (3x)^{'} + 2 \bullet \left( \cos{3x} \right)^{'};\]
\[y^{'}(x) = 3 + 2 \bullet \left( - 3\sin{3x} \right) =\]
\[= 3 \bullet \left( 1 - 2\sin{3x} \right).\]
\[Промежуток\ убывания:\]
\[1 - 2\sin{3x} < 0\]
\[2\sin{3x} > 1\]
\[\sin{3x} > \frac{1}{2}\]
\[\frac{\pi}{6} + 2\pi n < 3x < \pi - \frac{\pi}{6} + 2\pi n\]
\[\frac{\pi}{6} + 2\pi n < 3x < \frac{5\pi}{6} + 2\pi n\]
\[\frac{\pi}{18} + \frac{2\pi n}{3} < x < \frac{5\pi}{18} + \frac{2\pi n}{3}.\]
\[Ответ:\ \ возрастает\ \]
\[на\ \left( - \frac{7\pi}{18} + \frac{2\pi n}{3};\ \frac{\pi}{18} + \frac{2\pi n}{3} \right);\]
\[убывает\ на\ \]
\[\left( \frac{\pi}{18} + \frac{2\pi n}{3};\ \frac{5\pi}{18} + \frac{2\pi n}{3} \right).\]