\[\boxed{\mathbf{886}\mathbf{.}}\]
\[f'x) = 0\]
\[1)\ f(x) = ax^{2} - \frac{1}{x^{2}}\]
\[f^{'}(x) = a \bullet {(x)^{2}}^{'} - \left( x^{- 2} \right)^{'} =\]
\[= a \bullet 2x - ( - 2) \bullet x^{- 3} =\]
\[= 2 \bullet \left( ax + \frac{1}{x^{3}} \right)\]
\[Не\ имеет\ корней:\]
\[ax + \frac{1}{x^{3}} = 0\]
\[ax^{4} + 1 = 0\]
\[ax^{4} = - 1\]
\[x^{4} = - \frac{1}{a}.\]
\[Ответ:\ \ a \geq 0.\]
\[2)\ f(x) = ax + \frac{1}{x}\]
\[f^{'}(x) = a \bullet (x)^{'} + \left( \frac{1}{x} \right)^{'} = a - \frac{1}{x^{2}}\]
\[Не\ имеет\ корней:\]
\[a - \frac{1}{x^{2}} = 0\]
\[ax^{2} - 1 = 0\]
\[ax^{2} = 1\]
\[x^{2} = \frac{1}{a}.\]
\[Ответ:\ \ a \leq 0.\]
\[3)\ f(x) = ax^{3} + 3x^{2} + 6x\]
\[f^{'}(x) =\]
\[= a \bullet \left( x^{3} \right)^{'} + 3 \bullet \left( x^{2} \right)^{'} + (6x)^{'} =\]
\[= a \bullet 3x^{2} + 3 \bullet 2x + 6 =\]
\[= 3 \bullet \left( ax^{2} + 2x + 2 \right)\]
\[Не\ имеет\ корней:\]
\[ax^{2} + 2x + 2 = 0\]
\[D = 2^{2} - 4 \bullet a \bullet 2 = 4 - 8a =\]
\[= 4 \bullet (1 - 2a) < 0\]
\[1 - 2a < 0\]
\[2a > 1\]
\[a > 0,5.\]
\[Ответ:\ \ a > 0,5.\]
\[4)\ f(x) = x^{3} + 6x^{2} + ax\]
\[f^{'}(x) = \left( x^{3} \right)^{'} + 6 \bullet \left( x^{2} \right) + a \bullet (x)^{'} =\]
\[= 3x^{2} + 6 \bullet 2x + a =\]
\[= 3x^{2} + 12x + a\]
\[Не\ имеет\ корней:\]
\[3x^{2} + 12x + a = 0\]
\[D = 12^{2} - 4 \bullet 3 \bullet a = 144 - 12a =\]
\[= 12 \bullet (12 - a) < 0\]
\[12 - a < 0\]
\[a > 12.\]
\[Ответ:\ \ a > 12.\]