\[\boxed{\mathbf{866}\mathbf{.}}\]
\[1)\ f(x) = e^{x} + e^{- x}\text{\ \ }k = \frac{3}{2}:\]
\[f^{'}(x) = \left( e^{x} \right)^{'} + \left( e^{- x} \right) = e^{x} - e^{- x}\]
\[k = e^{x} - e^{- x} = \frac{3}{2}\]
\[e^{x} - \frac{1}{e^{x}} = \frac{3}{2}\]
\[e^{2x} - 1 = \frac{3}{2}e^{x}\]
\[2e^{2x} - 3e^{x} - 2 = 0\]
\[y = e^{x}:\]
\[2y^{2} - 3y - 2 = 0\]
\[D = 9 + 16 = 25\]
\[y_{1} = \frac{3 - 5}{2 \bullet 2} = - \frac{1}{2}\]
\[y_{2} = \frac{3 + 5}{2 \bullet 2} = 2.\]
\[1)\ e^{x} = - \frac{1}{2} < 0\]
\[корней\ нет.\]
\[2)\ e^{x} = 2\]
\[e^{x} = e^{\ln 2}\]
\[x = \ln 2.\]
\[3)\ f\left( \ln 2 \right) = e^{\ln 2} + e^{- \ln 2} =\]
\[= e^{\ln 2} + e^{\ln{0,5}} = 2 + 0,5 = 2,5.\]
\[Ответ:\ \ \left( \ln 2\ 2,5 \right).\]
\[2)\ f(x) = \sqrt{3x + 1}\text{\ \ }k = \frac{3}{4}:\]
\[f^{'}(x) = (3x + 1)^{\frac{1}{2}} =\]
\[= \frac{1}{2} \bullet 3 \bullet (3x + 1)^{- \frac{1}{2}} = \frac{3}{2\sqrt{3x + 1}}\]
\[k = \frac{3}{2\sqrt{3x + 1}} = \frac{3}{4}\]
\[2\sqrt{3x + 1} = 4\]
\[4(3x + 1) = 16\]
\[12x + 4 = 16\]
\[12x = 12\ \]
\[x = 1.\]
\[f(1) = \sqrt{3 + 1} = \sqrt{4} = 2.\]
\[Ответ:\ \ (1\ 2).\]
\[3)\ f(x) = \sin{2x}\text{\ \ }k = 2:\]
\[f^{'}(x) = \left( \sin{2x} \right)^{'} = 2\cos{2x}\]
\[k = 2\cos{2x} = 2\]
\[\cos{2x} = 1\]
\[2x = \arccos 1 + 2\pi n = 2\pi n\]
\[x = \frac{1}{2} \bullet (2\pi n) = \pi n.\]
\[f\left( \text{πn} \right) = \sin{2\pi n} = \sin 0 = 0.\]
\[Ответ:\ \ (\pi n\ 0).\]
\[4)\ f(x) = x + \sin x\text{\ \ }k = 0:\]
\[f^{'}(x) = (x)^{'} + \left( \sin x \right)^{'} =\]
\[= 1 + \cos x\]
\[k = 1 + \cos x = 0\]
\[\cos\text{\ x} = - 1\]
\[x = \pi - \arccos 1 + 2\pi n =\]
\[= \pi + 2\pi n.\]
\[f(\pi + \pi n) =\]
\[= \pi + 2\pi n + \sin(\pi + 2\pi n) =\]
\[= \pi + 2\pi n + \sin\pi = \pi + 2\pi n.\]
\[Ответ:\ \ (\pi + 2\pi n\ \ \pi + 2\pi n).\]