\[\boxed{\mathbf{859}\mathbf{.}}\]
\[k = tg\ a\]
\[a = arctg\ k.\]
\[1)\ f(x) = \frac{1}{3}x^{3}\text{\ \ }и\ \ x_{0} = 1:\]
\[f^{'}(x) = \frac{1}{3} \bullet \left( x^{3} \right)^{'} = \frac{1}{3} \bullet 3x^{2} = x^{2}\]
\[k = f^{'}(1) = 1^{2} = 1\]
\[a = arctg\ 1 = \frac{\pi}{4}.\]
\[Ответ:\ \ a = \frac{\pi}{4}.\]
\[2)\ f(x) = \frac{1}{x}\text{\ \ }и\ \ x_{0} = 1:\]
\[f^{'}(x) = \left( \frac{1}{x} \right)^{'} = - \frac{1}{x^{2}}\]
\[k = f^{'}(1) = - \frac{1}{1^{2}} = - 1\]
\[a = - arctg\ 1 = - \frac{\pi}{4}.\]
\[Ответ:\ \ a = - \frac{\pi}{4}.\]
\[3)\ f(x) = 2\sqrt{x}\text{\ \ }и\ \ x_{0} = 3:\]
\[f^{'}(x) = 2 \bullet \left( \sqrt{x} \right)^{'} = 2 \bullet \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}}\]
\[k = f^{'}(3) = \frac{1}{\sqrt{3}}\]
\[a = arctg\frac{1}{\sqrt{3}} = \frac{\pi}{6}.\]
\[Ответ:\ \ a = \frac{\pi}{6}.\]
\[4)\ f(x) = \frac{18}{\sqrt{x}}\text{\ \ }и\ \ x_{0} = 3:\]
\[f^{'}(x) = 18 \bullet \left( x^{- \frac{1}{2}} \right)^{'} =\]
\[= 18 \bullet \left( - \frac{1}{2} \right) \bullet x^{- \frac{3}{2}} = - \frac{9}{x\sqrt{x}}\]
\[k = f^{'}(3) = - \frac{9}{3\sqrt{3}} =\]
\[= - \frac{3}{\sqrt{3}} = - \sqrt{3}\]
\[a = - arctg\ \sqrt{3} = - \frac{\pi}{3}.\]
\[Ответ:\ \ a = - \frac{\pi}{3}.\]
\[5)\ f(x) = e^{\frac{3x + 1}{2}}\text{\ \ }и\ \ x_{0} = 0:\]
\[f^{'}(x) = \left( e^{\frac{3}{2}x + \frac{1}{2}} \right)^{'} = \frac{3}{2}e^{\frac{3x + 1}{2}}\]
\[k = f^{'}(0) = \frac{3}{2}e^{\frac{3 \bullet 0 + 1}{2}} =\]
\[= \frac{3}{2}e^{\frac{1}{2}} = \frac{3\sqrt{e}}{2}\]
\[a = arctg\frac{3\sqrt{e}}{2}.\]
\[Ответ:\ \ a = arctg\ \frac{3\sqrt{e}}{2}.\]
\[6)\ f(x) = \ln(2x + 1)\ и\ \ x_{0} = 2:\]
\[f^{'}(x) = \left( \ln(2x + 1) \right)^{'} = \frac{2}{2x + 1}\]
\[k = f^{'}(2) = \frac{2}{2 \bullet 2 + 1} =\]
\[= \frac{2}{4 + 1} = \frac{2}{5}\]
\[a = arctg\frac{2}{5}.\]
\[Ответ:\ \ a = arctg\frac{2}{5}.\]