\[\boxed{\mathbf{855}\mathbf{.}}\]
\[\mathbf{П}ри\ x > 0.\]
\[1)\ f(x) = x - \ln x\]
\[f^{'}(x) = (x)^{'} - \left( \ln x \right)^{'} = 1 - \frac{1}{x}\]
\[1 - \frac{1}{x} = 0\]
\[x - 1 = 0\]
\[x = 1.\]
\[Производная\ положительна:\]
\[1 - \frac{1}{x} > 0\]
\[x^{2} - x > 0\]
\[x(x - 1) > 0\]
\[x < 0\ или\ x > 1.\]
\[Производная\ отрицательна:\]
\[x(x - 1) < 0\]
\[0 < x < 1.\]
\[Ответ:\ \ 1\ \ x \in (1\ + \infty)\text{\ \ }\]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }x \in (0\ 1).\]
\[2)\ f(x) = x \bullet \ln x\]
\[f^{'}(x) = (x)^{'} \bullet \ln x + x \bullet \left( \ln x \right)^{'} =\]
\[= 1 \bullet \ln x + x \bullet \frac{1}{x} = \ln x + 1\]
\[\ln x + 1 = 0\]
\[\ln x = - 1\]
\[\ln x = \ln e^{- 1}\]
\[x = e^{- 1}.\]
\[Производная\ положительна:\]
\[\ln x + 1 > 0\]
\[\ln x > - 1\]
\[x > e^{- 1}.\]
\[Производная\ отрицательна:\]
\[\ln x + 1 < 0\]
\[\ln x < - 1\]
\[x < e^{- 1}.\]
\[Ответ:\ \ e^{- 1}\text{\ \ }x \in \left( e^{- 1}\ + \infty \right)\text{\ \ }\]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }x \in \left( 0\ e^{- 1} \right)\text{\ .}\]
\[3)\ f(x) = x^{2} \bullet \ln x\ \]
\[f^{'}(x) = \left( x^{2} \right)^{'} \bullet \ln x + x^{2} \bullet \left( \ln x \right)^{'} =\]
\[= 2x \bullet \ln x + x^{2} \bullet \frac{1}{x} =\]
\[= x \bullet \left( 2\ln x + 1 \right)\]
\[x \bullet \left( 2\ln x + 1 \right) = 0\]
\[2\ln x + 1 = 0\]
\[2\ln x = - 1\]
\[\ln x = - \frac{1}{2}\]
\[\ln x = \ln e^{- \frac{1}{2}}\]
\[x = e^{- \frac{1}{2}} = \frac{1}{\sqrt{e}}.\]
\[Производная\ положительна:\]
\[x \bullet \left( 2\ln x + 1 \right) > 0\]
\[x < 0\ или\ x > \frac{1}{\sqrt{e}}.\]
\[Производная\ отрицательна:\]
\[x \bullet \left( 2\ln x + 1 \right) < 0\]
\[0 < x < \frac{1}{\sqrt{e}}.\]
\[Ответ:\ \ \frac{1}{\sqrt{e}}\ \ x \in \left( \frac{1}{\sqrt{e}}\ + \infty \right)\text{\ \ }\]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }x \in \left( 0\ \frac{1}{\sqrt{e}} \right).\]
\[4)\ f(x) = x^{3} - 3\ln x\]
\[f^{'}(x) = \left( x^{3} \right)^{'} - 3 \bullet \left( \ln x \right)^{'} =\]
\[= 3x^{2} - 3 \bullet \frac{1}{x} = 3\left( x^{2} - \frac{1}{x} \right)\]
\[Производная\ равна\ нулю:\]
\[x^{2} - \frac{1}{x} = 0\]
\[x^{3} - 1 = 0\]
\[x^{3} = 1\]
\[x = 1.\]
\[Производная\ положительна:\]
\[x^{2} - \frac{1}{x} > 0\]
\[x^{4} - x > 0\]
\[x \bullet \left( x^{3} - 1 \right) > 0\]
\[x < 0\ или\ x > 1.\]
\[Производная\ отрицательна:\]
\[x \bullet \left( x^{3} - 1 \right) < 0\]
\[0 < x < 1.\]
\[Ответ:\ \ 1\ \ x \in (1\ + \infty)\text{\ \ }\]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }x \in (0\ 1).\]