\[\boxed{\mathbf{853}\mathbf{.}}\]
\[1)\ f(x) = e^{2x} \bullet \ln(2x - 1)\]
\[= 2e^{2x} \bullet \ln(2x - 1) + e^{2x} \bullet \frac{2}{2x - 1} =\]
\[= 2e^{2x} \bullet \left( \ln(2x - 1) + \frac{1}{2x - 1} \right).\]
\[e^{2x} \bullet \ln(2x - 1) = 0\]
\[\ln{(2x - 1}) = 0\]
\[\ln(2x - 1) = \ln 1\]
\[2x - 1 = 1\]
\[2x = 2\]
\[x = 1.\]
\[f^{'}(1) = 2e^{2} \bullet \left( \ln(2 - 1) + \frac{1}{2 - 1} \right) =\]
\[= 2e^{2} \bullet \left( \ln 1 + 1 \right) = 2e^{2}.\]
\[Ответ:\ \ 2e^{2}.\]
\[2)\ f(x) = \frac{\sin x - \cos x}{\sin x}\]
\[f^{'}(x) = \frac{1}{\sin^{2}x}\]
\[\frac{\sin x - \cos x}{\sin x} = 0\]
\[1 - ctg\ x = 0\]
\[\text{ctg\ x} = 1\]
\[x = arcctg\ 1 + \pi n = \frac{\pi}{4} + \pi n.\]
\[f^{'}\left( \frac{\pi}{4} + \pi n \right) = \frac{1}{\sin^{2}\left( \frac{\pi}{4} + \pi n \right)} =\]
\[= \frac{1}{\left( \sin\frac{\pi}{4} \right)^{2}} = 1\ :\left( \frac{1}{\sqrt{2}} \right)^{2} =\]
\[= 1\ :\frac{1}{2} = 2.\]
\[Ответ:\ \ 2.\]