\[\boxed{\mathbf{844}\mathbf{.}}\]
\[1)\ f(x) = \sqrt[3]{\frac{3}{2 - x}} - 3\cos\frac{x - 2}{3}\]
\[= \frac{\sqrt[3]{3}}{3(2 - x)\sqrt[3]{2 - x}} + \sin\frac{x - 2}{3}.\]
\[2)\ f(x) = 2 \bullet \sqrt[4]{\frac{1}{(x + 2)^{3}}} - 5e^{\frac{x - 4}{5}}\]
\[f^{'}(x) =\]
\[= 2 \bullet {(x + 2)^{- \frac{3}{4}}}^{'} - 5 \bullet \left( e^{\frac{1}{5}x - \frac{4}{5}} \right)^{'} =\]
\[= 2 \bullet \left( - \frac{3}{4} \right) \bullet (x + 2)^{- \frac{7}{4}} - 5 \bullet \frac{1}{5} \bullet e^{\frac{1}{5}x - \frac{4}{5}} =\]
\[= - \frac{3}{2(x + 2)\sqrt[4]{(x + 2)^{3}}} - e^{\frac{x - 4}{5}}.\]