\[\boxed{\mathbf{831}\mathbf{.}}\]
\[1)\ f(x) = e^{x} + 1\]
\[f^{'}(x) = \left( e^{x} \right)^{'} + (1)^{'} =\]
\[= e^{x} + 0 = e^{x}\]
\[2)\ f(x) = e^{x} + x^{2}\]
\[f^{'}(x) = \left( e^{x} \right)^{'} + \left( x^{2} \right)^{'} = e^{x} + 2x\]
\[3)\ f(x) = e^{2x} + \frac{1}{x}\]
\[f^{'}(x) = \left( e^{2x} \right)^{'} + \left( \frac{1}{x} \right)^{'} =\]
\[= 2e^{2x} - \frac{1}{x^{2}}\]
\[4)\ f(x) = e^{- 3x} + \sqrt{x}\]
\[f^{'}(x) = \left( e^{- 3x} \right)^{'} + \left( \sqrt{x} \right)^{'} =\]
\[= - 3e^{- 3x} + \frac{1}{2\sqrt{x}}.\]