\[\boxed{\mathbf{797}\mathbf{.}}\]
\[1)\ f(x) = x^{3}\]
\[f^{'}(x) = 3 \bullet x^{3 - 1} = 3x^{2}\]
\[3x^{2} = 1\]
\[x^{2} = \frac{1}{3}\]
\[x = \pm \sqrt{\frac{1}{3}} = \pm \sqrt{\frac{3}{9}} = \pm \frac{\sqrt{3}}{3}.\]
\[Ответ:\ \pm \frac{\sqrt{3}}{3}.\]
\[2)\ f(x) = \sqrt[3]{x^{2}} = x^{\frac{2}{3}}\]
\[f^{'}(x) = \frac{2}{3} \bullet x^{\frac{2}{3} - 1} = \frac{2}{3} \bullet x^{- \frac{1}{3}} = \frac{2}{3\sqrt[3]{x}}\]
\[\frac{2}{3\sqrt[3]{x}} = 1\]
\[\frac{1}{\sqrt[3]{x}} = \frac{3}{2}\]
\[\sqrt[3]{x} = \frac{2}{3}\]
\[x = \left( \frac{2}{3} \right)^{3} = \frac{8}{27}.\]
\[Ответ:\ \ \frac{8}{27}.\]