\[\boxed{\mathbf{790}\mathbf{.}}\]
\[1)\ f(x) = \frac{1}{x^{5}} = x^{- 5}\]
\[f^{'}(x) = - 5 \bullet x^{- 5 - 1} =\]
\[= - 5 \bullet x^{- 6} = - \frac{5}{x^{6}}\]
\[2)\ f(x) = \frac{1}{x^{9}} = x^{- 9}\]
\[f^{'}(x) = - 9 \bullet x^{- 9 - 1} =\]
\[= - 9 \bullet x^{- 10} = - \frac{9}{x^{10}}\]
\[3)\ f(x) = \sqrt[4]{x} = x^{\frac{1}{4}}\]
\[f^{'}(x) = \frac{1}{4} \bullet x^{\frac{1}{4} - 1} = \frac{1}{4} \bullet x^{- \frac{3}{4}} =\]
\[= \frac{1}{4} \bullet \frac{1}{x^{\frac{3}{4}}} = \frac{1}{4\sqrt[4]{x^{3}}}\]
\[4)\ f(x) = \sqrt[3]{x^{2}} = x^{\frac{2}{3}}\]
\[f^{'}(x) = \frac{2}{3} \bullet x^{\frac{2}{3} - 1} = \frac{2}{3} \bullet x^{- \frac{1}{3}} =\]
\[= \frac{2}{3} \bullet \frac{1}{x^{\frac{1}{3}}} = \frac{2}{3\sqrt[3]{x}}\]
\[5)\ f(x) = \frac{1}{\sqrt[3]{x}} = \frac{1}{x^{\frac{1}{3}}} = x^{- \frac{1}{3}}\]
\[f^{'}(x) = - \frac{1}{3} \bullet x^{- \frac{1}{3} - 1} = - \frac{1}{3} \bullet x^{- \frac{4}{3}} =\]
\[= - \frac{1}{3} \bullet \frac{1}{x \bullet x^{\frac{1}{3}}\ } = - \frac{1}{3x\sqrt[3]{x}}\]
\[6)\ f(x) = \frac{1}{\sqrt[4]{x^{3}}} = \frac{1}{x^{\frac{3}{4}}} = x^{- \frac{3}{4}}\]
\[f^{'}(x) = - \frac{3}{4} \bullet x^{- \frac{3}{4} - 1} = - \frac{3}{4} \bullet x^{- \frac{7}{4}} =\]
\[= - \frac{3}{4} \bullet \frac{1}{x \bullet x^{\frac{3}{4}}} = - \frac{3}{4\sqrt[4]{x^{3}}}.\]