\[\boxed{\mathbf{747}\mathbf{.}}\]
\[1)\ y = tg\ x \bullet ctg\ x =\]
\[= tg\ x \bullet \frac{1}{\text{tg\ x}} = 1;\]
\[x_{1} \neq \frac{\pi}{2} + \pi n\ \ и\ \ x_{2} \neq \pi n;\]
\[x \neq \frac{\text{πn}}{2}.\]
\[2)\ y = \sin x \bullet ctg\ x =\]
\[= \sin x \bullet \frac{\cos x}{\sin x} = \cos x;\]
\[\textbf{а)}\ x \neq \pi n.\]
\[\textbf{б)}\ - 1 \leq \cos x \leq 1\]
\[E(y) = \lbrack - 1;\ 1\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x)\]
\[\cos(x + T) = \cos x\]
\[T = 2\pi.\]
\[\textbf{г)}\ Функция\ четная:\]
\[y( - x) = \cos( - x) = \cos x = y(x).\]
\[\textbf{д)}\ \cos x = 0\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[\cos x = 1;\]
\[x = \arccos 1 + 2\pi n = 2\pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[\cos x = - 1;\]
\[x = \pi - \arccos 1 + 2\pi n =\]
\[= \pi + 2\pi n.\]