\[\boxed{\mathbf{742}\mathbf{.}}\]
\[1)\ tg\ 2x = \sqrt{3}\]
\[2x = arctg\ \sqrt{3} + \pi n = \frac{\pi}{3} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{3} + \pi n \right) = \frac{\pi}{6} + \frac{\text{πn}}{2}\]
\[\left( - \frac{\pi}{2};\ \pi \right):\]
\[x_{1} = \frac{\pi}{6} - \frac{\pi}{2} = - \frac{\pi}{3};\]
\[x_{2} = \frac{\pi}{6};\]
\[x_{3} = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}.\]
\[2)\ tg\ 3x = - 1\]
\[3x = - arctg\ 1 + \pi n\]
\[3x = - \frac{\pi}{4} + \pi n\]
\[x = \frac{1}{3} \bullet \left( - \frac{\pi}{4} + \pi n \right)\]
\[x = - \frac{\pi}{12} + \frac{\text{πn}}{3}\]
\[\left( - \frac{\pi}{2};\ \pi \right):\]
\[x_{1} = - \frac{\pi}{12} - \frac{\pi}{3} = \frac{5\pi}{12};\]
\[x_{2} = - \frac{\pi}{12};\]
\[x_{3} = - \frac{\pi}{12} + \frac{\pi}{3} = \frac{\pi}{4};\]
\[x_{4} = - \frac{\pi}{12} + \frac{2\pi}{3} = \frac{7\pi}{12};\]
\[x_{5} = - \frac{\pi}{12} + \pi = \frac{11\pi}{12}.\]