\[\boxed{\mathbf{736}\mathbf{.}}\]
\[1)\ tg\ x = 1\]
\[x = arctg\ 1 + \pi n = \frac{\pi}{4} + \pi n\]
\[( - \pi;\ 2\pi):\]
\[x_{1} = \frac{\pi}{4} - \pi = - \frac{3\pi}{4};\]
\[x_{2} = \frac{\pi}{4};\]
\[x_{3} = \frac{\pi}{4} + \pi = \frac{5\pi}{4}.\]
\[2)\ tg\ x = \sqrt{3}\]
\[x = arctg\ \sqrt{3} + \pi n = \frac{\pi}{3} + \pi n\]
\[( - \pi;\ 2\pi):\]
\[x_{1} = \frac{\pi}{3} - \pi = - \frac{2\pi}{3};\]
\[x_{2} = \frac{\pi}{3};\]
\[x_{3} = \frac{\pi}{3} + \pi = \frac{4\pi}{3}.\]
\[3)\ tg\ x = - \sqrt{3}\]
\[x = - arctg\ \sqrt{3} + \pi n\]
\[x = - \frac{\pi}{3} + \pi n.\]
\[( - \pi;\ 2\pi):\]
\[x_{1} = - \frac{\pi}{3};\]
\[x_{2} = - \frac{\pi}{3} + \pi = \frac{2\pi}{3};\]
\[x_{3} = - \frac{\pi}{3} + 2\pi = \frac{5\pi}{3}.\]
\[4)\ tg\ x = - 1\ \]
\[x = - arctg\ 1 + \pi n\]
\[x = - \frac{\pi}{4} + \pi n.\]
\[( - \pi;\ 2\pi):\]
\[x_{1} = - \frac{\pi}{4};\]
\[x_{2} = - \frac{\pi}{4} + \pi = \frac{3\pi}{4};\]
\[x_{3} = - \frac{\pi}{4} + 2\pi = \frac{7\pi}{4}.\]