\[\boxed{\mathbf{729}\mathbf{.}}\]
\[1)\ y = 1 - \sin x\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)} - 1 \leq \sin x \leq 1;\]
\[- 1 \leq - \sin x \leq 1;\]
\[0 \leq 1 - \sin x \leq 2;\]
\[E(y) = \lbrack 0;\ 2\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x);\]
\[1 - \sin(x + T) = 1 - \sin x;\]
\[T = 2\pi.\]
\[\textbf{г)}\ Ни\ четная,\ ни\ нечетная:\]
\[y( - x) = 1 - \sin( - x) = 1 + \sin x.\]
\[\textbf{д)}\ 1 - \sin x = 0;\]
\[\sin x = 1;\]
\[x = \arcsin 1 + 2\pi n = \frac{\pi}{2} + 2\pi n.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[1 - \sin x = 2;\]
\[\sin x = 1 - 2;\]
\[\sin x = - 1;\]
\[x = \arcsin( - 1) + 2\pi n\]
\[x = \frac{3\pi}{2} + 2\pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[x = \frac{\pi}{2} + 2\pi n.\]
\[\textbf{з)}\ Возрастает:\ \]
\[\frac{\pi}{2} + 2\pi n < x < \frac{3\pi}{2} + 2\pi n;\]
\[убывает:\]
\[- \frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n;\]
\[положительна:\]
\[x \neq \frac{\pi}{2} + 2\pi n.\]
\[2)\ y = 2 + \sin x\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \sin x \leq 1;\]
\[1 \leq 2 + \sin x \leq 3;\]
\[E(y) = \lbrack 1;\ 3\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x);\]
\[2 + \sin(x + T) = 2 + \sin x;\]
\[T = 2\pi.\]
\[\textbf{г)}\ Ни\ четная,\ ни\ нечетная:\]
\[y( - x) = 2 + \sin( - x) = 2 - \sin x.\]
\[\textbf{д)}\ 2 + \sin x = 0\]
\[нет\ корней.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[2 + \sin x = 3;\]
\[\sin x = 1;\]
\[x = \arcsin 1 + 2\pi n = \frac{\pi}{2} + 2\pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[2 + \sin x = 1;\]
\[\sin x = - 1;\]
\[x = \arcsin( - 1) + 2\pi n\]
\[x = \frac{3\pi}{2} + 2\pi n.\]
\[\textbf{з)}\ Возрастает:\]
\[- \frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n;\]
\[убывает:\ \]
\[\frac{\pi}{2} + 2\pi n < x < \frac{3\pi}{2} + 2\pi n;\]
\[положительна\ при\ x \in R.\]
\[3)\ y = \sin{3x}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \sin{3x} \leq 1;\]
\[E(y) = \lbrack - 1;\ 1\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x);\]
\[\sin\left( 3 \bullet (x + T) \right) = \sin{3x};\]
\[\sin(3x + 3T) = \sin{3x};\]
\[3T = 2\pi;\]
\[T = \frac{2\pi}{3}.\]
\[\textbf{г)}\ Функция\ нечетная:\]
\[y( - x) = \sin( - 3x) =\]
\[= - \sin{3x} = - y(x).\]
\[\textbf{д)}\ \sin{3x} = 0;\]
\[3x = \arcsin 0 + \pi n = \pi n;\]
\[x = \frac{\text{πn}}{3}.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[\sin{3x} = 1\]
\[3x = \arcsin 1 + 2\pi n\]
\[3x = \frac{\pi}{2} + 2\pi n\]
\[x = \frac{1}{3} \bullet \left( \frac{\pi}{2} + 2\pi n \right) = \frac{\pi}{6} + \frac{2\pi n}{3}.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[\sin{3x} = - 1\]
\[3x = - \arcsin 1 + 2\pi n\]
\[3x = - \frac{\pi}{2} + 2\pi n\]
\[x = \frac{1}{3} \bullet \left( - \frac{\pi}{2} + 2\pi n \right)\]
\[x = - \frac{\pi}{6} + \frac{2\pi n}{3}.\]
\[\textbf{з)}\ Возрастает:\]
\[- \frac{\pi}{6} + \frac{2\pi n}{3} < x < \frac{\pi}{6} + \frac{2\pi n}{3};\]
\[убывает:\]
\[\frac{\pi}{6} + \frac{2\pi n}{3} < x < \frac{\pi}{2} + \frac{2\pi n}{3};\]
\[положительна:\]
\[\frac{2\pi n}{3} < x < \frac{\pi}{3} + \frac{2\pi n}{3};\]
\[отрицательна:\]
\[\frac{\pi}{3} + \frac{2\pi n}{3} < x < \frac{2\pi}{3} + \frac{2\pi n}{3}.\]
\[4)\ y = 2\sin x\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \sin x \leq 1;\]
\[- 2 \leq 2\sin x \leq 2;\]
\[E(y) = \lbrack - 2;\ 2\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x);\]
\[2\sin(x + T) = 2\sin x;\]
\[T = 2\pi.\]
\[\textbf{г)}\ Функция\ нечетная:\]
\[y( - x) = 2\sin( - x) =\]
\[= - 2\sin x = - y(x).\]
\[\textbf{д)}\ 2\sin x = 0;\]
\[\sin x = 0;\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[2\sin x = 2\]
\[\sin x = 1\]
\[x = \arcsin 1 + 2\pi n = \frac{\pi}{2} + 2\pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[2\sin x = - 2\]
\[\sin x = - 1\]
\[x = - \arcsin 1 + 2\pi n\]
\[x = - \frac{\pi}{2} + 2\pi n.\]
\[\textbf{з)}\ Возрастает:\]
\[- \frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n;\]
\[убывает:\]
\[\frac{\pi}{2} + 2\pi n < x < \frac{3\pi}{2} + 2\pi n;\]
\[положительна:\]
\[2\pi n < x < \pi + 2\pi n;\]
\[отрицательна:\]
\[- \pi + \pi n < x < 2\pi n.\]