\[\boxed{\mathbf{699}\mathbf{.}}\]
\[y = 4\cos{2x} - 3\sin{2x} + 6.\]
\[\cos\left( \arcsin\frac{3}{5} \right) = \frac{4}{5}:\]
\[\cos\left( \arcsin\frac{3}{5} \right) =\]
\[= \sqrt{1 - \sin^{2}\left( \arcsin\frac{3}{5} \right)^{2}} =\]
\[= \sqrt{1 - \left( \frac{3}{5} \right)^{2}} = \sqrt{\frac{25}{25} - \frac{9}{25}} =\]
\[= \sqrt{\frac{16}{25}} = \frac{4}{5}.\]
\[Упростим:\]
\[y = 5\left( \frac{4}{5}\cos{2x} - \frac{3}{5}\sin{2x} \right) + 6 =\]
\[= 5 \bullet \cos\left( \arcsin\frac{3}{5} + 2x \right) + 6 =\]
\[= 5 \bullet \cos\varphi + 6,\ где\ \varphi =\]
\[= \arcsin\frac{3}{5} + 2x.\]
\[Область\ значений:\]
\[- 1 \leq \cos x \leq 1\]
\[- 5 \leq 5\cos x \leq 5\]
\[1 \leq 5\cos x + 6 \leq 11.\]
\[Ответ:\ \ E(y) = \lbrack 1;\ 11\rbrack.\]