\[\boxed{\mathbf{697}\mathbf{.}}\]
\[y = 3\cos{2x} - 4\sin{2x}\]
\[\cos\left( \arcsin\frac{3}{5} \right) = \frac{4}{5}:\]
\[\cos\left( \arcsin\frac{3}{5} \right) =\]
\[= \sqrt{1 - \sin^{2}\left( \arcsin\frac{3}{5} \right)^{2}} =\]
\[= \sqrt{1 - \left( \frac{3}{5} \right)^{2}} = \sqrt{\frac{25}{25} - \frac{9}{25}} =\]
\[= \sqrt{\frac{16}{25}} = \frac{4}{5}.\]
\[Упростим:\]
\[y = 5\left( \frac{3}{5}\cos{2x} - \frac{4}{5}\sin{2x} \right) =\]
\[= 5\sin\left( \arcsin\frac{3}{5} - 2x \right) = 5\sin\varphi;\ \]
\[где\ \varphi = \arcsin\frac{3}{5} - 2x.\]
\[Область\ значений:\]
\[- 1 \leq \sin\varphi \leq 1\]
\[- 5 \leq 5\sin\varphi \leq 5.\]
\[Ответ:\ \ y_{\min} = - 5;\ \ y_{\max} = 5.\]