\[\boxed{\mathbf{695}\mathbf{.}}\]
\[1)\ y = \frac{1}{2\sin^{2}x - \sin x}\]
\[2\sin^{2}x - \sin x \neq 0\]
\[\sin x \bullet \left( 2\sin x - 1 \right) \neq 0.\]
\[\sin x \neq 0\]
\[x \neq \arcsin 0 + \pi n = \pi n.\]
\[2\sin x - 1 \neq 0\]
\[2\sin x \neq 1\]
\[\sin x \neq \frac{1}{2}\]
\[x \neq ( - 1)^{n} \bullet \arcsin\frac{1}{2} + \pi n\]
\[x \neq ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n.\]
\[Ответ:\ \ x \neq \pi n;\ \ \]
\[x \neq ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n.\]
\[2)\ y = \frac{2}{\cos^{2}x - \sin^{2}x}\]
\[\cos^{2}x - \sin^{2}x \neq 0\]
\[\cos{2x} \neq 0\]
\[2x \neq \arccos 0 + \pi n\]
\[2x \neq \frac{\pi}{2} + \pi n\]
\[x \neq \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[Ответ:\ \ x \neq \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[3)\ y = \frac{1}{\sin x - \sin{3x}}\]
\[\sin x - \sin{3x} \neq 0\]
\[2 \bullet \sin\frac{x - 3x}{2} \bullet \cos\frac{x + 3x}{2} \neq 0\]
\[- 2 \bullet \sin x \bullet \cos{2x} \neq 0\]
\[\sin x \neq 0\]
\[x \neq \arcsin 0 + \pi n = \pi n.\]
\[\cos{2x} \neq 0\]
\[2x \neq \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x \neq \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[Ответ:\ \ x \neq \pi n;\ \ x \neq \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[4)\ y = \frac{1}{\cos^{3}x + \cos x}\]
\[\cos^{3}x + \cos x \neq 0\]
\[\cos x \bullet \left( \cos^{2}x + 1 \right) \neq 0\]
\[\cos x \neq 0\]
\[x \neq \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[\cos^{2}x + 1 \neq 0\]
\[\cos^{2}x \neq - 1\]
\[при\ любом\ x.\]
\[Ответ:\ \ x \neq \frac{\pi}{2} + \pi n.\]