\[\boxed{\mathbf{664}\mathbf{.}}\]
\[1)\ 5\sin x + \cos x = 5\]
\[10\ tg\frac{x}{2} - 6\ tg^{2}\frac{x}{2} - 4 = 0\]
\[y = tg\frac{x}{2}:\]
\[10y - 6y^{2} - 4 = 0\]
\[3y^{2} - 5y + 2 = 0\]
\[D = 25 - 24 = 1\]
\[y_{1} = \frac{5 - 1}{2 \bullet 3} = \frac{4}{6} = \frac{2}{3};\]
\[y_{2} = \frac{5 + 1}{2 \bullet 3} = 1.\]
\[\text{tg}\frac{x}{2} = \frac{2}{3}\]
\[\frac{x}{2} = arctg\frac{2}{3} + \pi n\]
\[x = 2 \bullet \left( \text{arctg}\frac{2}{3} + \pi n \right)\]
\[x = 2\ arctg\frac{2}{3} + 2\pi n.\]
\[\text{tg}\frac{x}{2} = 1\]
\[\frac{x}{2} = arctg\ 1 + \pi n = \frac{\pi}{4} + \pi n\]
\[x = 2 \bullet \left( \frac{\pi}{4} + \pi n \right)\]
\[x = \frac{\pi}{2} + 2\pi n.\]
\[Ответ:\ \ 2\ arctg\frac{2}{3} + 2\pi n;\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\frac{\pi}{2} + 2\pi n.\]
\[2)\ 4\sin x + 3\cos x = 6\]
\[8\ tg\frac{x}{2} - 9\ tg^{2}\frac{x}{2} - 3 = 0\]
\[y = tg\frac{x}{2}:\]
\[8y - 9y^{2} - 3 = 0\]
\[9y^{2} - 8y + 3 = 0\]
\[D = 64 - 108 = - 44 < 0\]
\[корней\ нет.\]
\[Ответ:\ \ корней\ нет.\]