\[\boxed{\mathbf{644}\mathbf{.}}\]
\[1)\ 4 \bullet \left| \cos x \right| + 3 = 4\sin^{2}x\]
\[4 \bullet \left| \cos x \right| + 3 - 4\left( 1 - \cos^{2}x \right) = 0\]
\[4 \bullet \left| \cos x \right| + 3 - 4 + 4\cos^{2}x = 0\]
\[4\cos^{2}x + 4 \bullet \left| \cos x \right| - 1 = 0\]
\[y = \cos x:\]
\[4y^{2} + 4|y| - 1 = 0\]
\[4y^{2} \pm 4y - 1 = 0\]
\[D = 16 + 16 = 16 \bullet 2\]
\[y = \frac{\pm 4 \pm 4\sqrt{2}}{2 \bullet 4} = \frac{\pm 4 \pm 4\sqrt{2}}{8} =\]
\[= \frac{\pm 1 \pm \sqrt{2}}{2},\]
\[\lbrack - 1\ 1\rbrack:\]
\[y_{1} = \frac{- 1 + \sqrt{2}}{2};y_{2} = \frac{1 - \sqrt{2}}{2};\]
\[y_{2} = - y_{1}.\]
\[\cos x = \pm \left( \frac{1 - \sqrt{2}}{2} \right)\]
\[x_{1} = \pm \arccos\frac{1 - \sqrt{2}}{2} + 2\pi n;\]
\[x_{2} = \pm \left( \pi - \arccos\frac{1 - \sqrt{2}}{2} \right) + 2\pi n.\]
\[Ответ:\ \ \pm \arccos\frac{1 - \sqrt{2}}{2} + \pi n.\]
\[2)\ \left| \text{tg\ x} \right| + 1 = \frac{1}{\cos^{2}x}\]
\[\left| \text{tg\ x} \right| = \frac{1}{\cos^{2}x} - 1\]
\[\left| \text{tg\ x} \right| = tg^{2}\text{\ x}\]
\[y = tg\ x:\]
\[|y| = y^{2}\]
\[y^{2} \pm y = 0\]
\[y \bullet (y \pm 1) = 0\]
\[y_{1} = \pm 1;\ y_{2} = 0.\]
\[1)\ tg\ x = \pm 1\]
\[x = \pm arctg\ 1 + \pi n\]
\[x = \pm \frac{\pi}{4} + \pi n.\]
\[2)\ tg\ x = 0\]
\[x = arctg\ 0 + \pi n = \pi n.\]
\[Ответ:\ \ \pi n;\ \ \pm \frac{\pi}{4} + \pi n.\]