\[\boxed{\mathbf{639}\mathbf{.}}\]
\[1)\sin x \bullet \sin{2x} \bullet \sin{3x} = \frac{1}{4}\sin{4x}\]
\[\sin x \bullet \sin{2x} \bullet \sin{3x} =\]
\[= \frac{1}{4} \bullet 2\sin{2x} \bullet \cos{2x}\]
\[\sin x \bullet \sin{2x} \bullet \sin{3x} =\]
\[= \frac{1}{2} \bullet 2\sin x \bullet \cos x \bullet \cos{2x}\]
\[\sin x \bullet \frac{\cos{3x} + \cos{5x}}{2} = 0\]
\[\sin x \bullet \cos\frac{3x + 5x}{2} \bullet \cos\frac{3x - 5x}{2} = 0\]
\[\sin x \bullet \cos{4x} \bullet \cos x = 0\]
\[\frac{1}{2}\sin{2x} \bullet \cos{4x} = 0\]
\[1)\ \sin{2x} = 0\]
\[2x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{2} \bullet \pi n = \frac{\text{πn}}{2}.\]
\[2)\ \cos{4x} = 0\]
\[4x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{4} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{8} + \frac{\text{πn}}{4}.\]
\[Ответ:\ \ \frac{\text{πn}}{2};\ \ \frac{\pi}{8} + \frac{\text{πn}}{4}.\]
\[2)\sin^{4}x + \cos^{4}x = \frac{1}{2} \bullet \sin^{2}{2x}\]
\[\sin^{4}x + \cos^{4}x = \frac{1}{2} \bullet 4\sin^{2}x \bullet \cos^{2}x\]
\[\sin^{4}x + \cos^{4}x - 2\sin^{2}x \bullet \cos^{2}x = 0\]
\[\left( \sin^{2}x - \cos^{2}x \right)^{2} = 0\]
\[\sin^{2}x - \cos^{2}x = 0\]
\[- \cos{2x} = 0\]
\[\cos{2x} = 0\]
\[2x = \arccos 0 + \pi n\]
\[2x = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right)\]
\[x = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[Ответ:\ \ \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[\]