\[\boxed{\mathbf{628}\mathbf{.}}\]
\[1)\ \left( tg\ x - \sqrt{3} \right)\left( 2\sin\frac{x}{12} + 1 \right) = 0\]
\[tg\ x - \sqrt{3} = 0\]
\[tg\ x = \sqrt{3}\]
\[x = arctg\ \sqrt{3} + \pi n\]
\[x = \frac{\pi}{3} + \pi n.\]
\[2\sin\frac{x}{12} + 1 = 0\]
\[2\sin\frac{x}{12} = - 1\]
\[\sin\frac{x}{12} = - \frac{1}{2}\]
\[\frac{x}{12} = ( - 1)^{n + 1} \bullet \arcsin\frac{1}{2} + \pi n\]
\[\frac{x}{12} = ( - 1)^{n + 1} \bullet \frac{\pi}{6} + \pi n\]
\[x = 12 \bullet \left( ( - 1)^{n + 1} \bullet \frac{\pi}{6} + \pi n \right)\]
\[x = ( - 1)^{n + 1} \bullet 2\pi + 12\pi n.\]
\[Ответ:\ \ \frac{\pi}{3} + \pi n;\ \ \]
\[( - 1)^{n + 1} \bullet 2\pi + 12\pi n.\]
\[2)\left( 1 - \sqrt{2}\cos\frac{x}{4} \right)\left( 1 + \sqrt{3}\text{\ tg\ x} \right) = 0\]
\[1 - \sqrt{2}\cos\frac{x}{4} = 0\]
\[\sqrt{2}\cos\frac{x}{4} = 1\]
\[\cos\frac{x}{4} = \frac{1}{\sqrt{2}}\]
\[\frac{x}{4} = \pm \arccos\frac{1}{\sqrt{2}} + 2\pi n\]
\[\frac{x}{4} = \pm \frac{\pi}{4} + 2\pi n\]
\[x = 4 \bullet \left( \pm \frac{\pi}{4} + 2\pi n \right)\]
\[x = \pm \pi + 8\pi n.\]
\[1 + \sqrt{3}\ tg\ x = 0\]
\[\sqrt{3}\ tg\ x = - 1\]
\[tg\ x = - \frac{1}{\sqrt{3}}\]
\[x = - arctg\frac{1}{\sqrt{3}} + \pi n\]
\[x = - \frac{\pi}{6} + \pi n.\]
\[Ответ:\ \pm \pi + 8\pi n;\ \ - \frac{\pi}{6} + \pi n.\]
\[3)\left( 2\sin\left( x + \frac{\pi}{6} \right) - 1 \right)(2\ tg\ x + 1) = 0\]
\[2\sin\left( x + \frac{\pi}{6} \right) - 1 = 0\]
\[2\sin\left( x + \frac{\pi}{6} \right) = 1\]
\[\sin\left( x + \frac{\pi}{6} \right) = \frac{1}{2}\]
\[\sin\left( \frac{\pi}{2} + \left( x - \frac{\pi}{3} \right) \right) = \frac{1}{2}\]
\[\cos\left( x - \frac{\pi}{3} \right) = \frac{1}{2}\]
\[x - \frac{\pi}{3} = \pm \arccos\frac{1}{2} + 2\pi n\]
\[x - \frac{\pi}{3} = \pm \frac{\pi}{3} + 2\pi n\]
\[x_{1} = - \frac{\pi}{3} + \frac{\pi}{3} + 2\pi n = 2\pi n;\]
\[x_{2} = + \frac{\pi}{3} + \frac{\pi}{3} + 2\pi n =\]
\[= \frac{2\pi}{3} + 2\pi n.\]
\[2\ tg\ x + 1 = 0\]
\[2\ tg\ x = - 1\]
\[tg\ x = - \frac{1}{2}\]
\[x = - arctg\frac{1}{2} + \pi n.\]
\[Ответ:\ \ 2\pi n;\ \ \frac{2\pi}{3} + 2\pi n;\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } - arctg\frac{1}{2} + \pi n.\]
\[4)\ \left( 1 + \sqrt{2}\cos\left( x + \frac{\pi}{4} \right) \right)(tg\ x - 3) = 0\]
\[1 + \sqrt{2}\cos\left( x + \frac{\pi}{4} \right) = 0\]
\[\sqrt{2}\cos\left( x + \frac{\pi}{4} \right) = - 1\]
\[\cos\left( x + \frac{\pi}{4} \right) = - \frac{1}{\sqrt{2}}\]
\[x + \frac{\pi}{4} = \pm \left( \pi - \arccos\frac{1}{\sqrt{2}} \right) + 2\pi n\]
\[x + \frac{\pi}{4} = \pm \left( \pi - \frac{\pi}{4} \right) + 2\pi n\]
\[x + \frac{\pi}{4} = \pm \frac{3\pi}{4} + 2\pi n\]
\[x_{1} = - \frac{3\pi}{4} - \frac{\pi}{4} + 2\pi n =\]
\[= - \pi + 2\pi n;\]
\[x_{2} = + \frac{3\pi}{4} - \frac{\pi}{4} + 2\pi n =\]
\[= \frac{\pi}{2} + 2\pi n - нет.\]
\[tg\ x - 3 = 0\]
\[tg\ x = 3\]
\[x = arctg\ 3 + \pi n.\]
\[Ответ:\ - \pi + 2\pi n;\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ }arctg\ 3 + \pi n.\]