\[\boxed{\mathbf{623}\mathbf{.}}\]
\[1)\ 1 + 7\cos^{2}x = 3\sin{2x}\]
\[tg^{2}x + 8 - 6\ tg\ x = 0\]
\[y = tg\ x:\]
\[y^{2} - 6y + 8 = 0\]
\[D = 36 - 32 = 4\]
\[y_{1} = \frac{6 - 2}{2} = 2;\]
\[y_{2} = \frac{6 + 2}{2} = 4.\]
\[1)\ tg\ x = 2\]
\[x = arctg\ 2 + \pi n.\]
\[2)\ tg\ x = 4\]
\[x = arctg\ 4 + \pi n.\]
\[Ответ:\ \ arctg\ 2 + \pi n;\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }arctg\ 4 + \pi n.\]
\[2)\ 3 + \sin{2x} = 4\sin^{2}x\]
\[3 - tg^{2}\ x + 2\ tg\ x = 0\]
\[y = tg\ x:\]
\[3 - y^{2} + 2y = 0\]
\[y^{2} - 2y - 3 = 0\]
\[D = 4 + 12 = 16\]
\[y_{1} = \frac{2 - 4}{2} = - 1;\]
\[y_{2} = \frac{2 + 4}{2} = 3.\]
\[1)\ tg\ x = - 1\]
\[x = - arctg\ 1 + \pi n\]
\[x = - \frac{\pi}{4} + \pi n.\]
\[2)\ tg\ x = 3\]
\[x = arctg\ 3 + \pi n.\]
\[Ответ:\ - \frac{\pi}{4} + \pi n;\ \ \]
\[\text{\ \ \ \ \ \ \ \ }arctg\ 3 + \pi n.\]
\[2 - tg^{2}\ x + tg\ x = 0\]
\[y = tg\ x:\]
\[2 - y^{2} + y = 0\]
\[y^{2} - y - 2 = 0\]
\[D = 1 + 8 = 9\]
\[y_{1} = \frac{1 - 3}{2} = - 1;\]
\[y_{2} = \frac{1 + 3}{2} = 2.\]
\[1)\ tg\ x = - 1\]
\[x = - arctg\ 1 + \pi n\]
\[x = - \frac{\pi}{4} + \pi n.\]
\[2)\ tg\ x = 2\]
\[x = arctg\ 2 + \pi n.\]
\[Ответ:\ - \frac{\pi}{4} + \pi n;\ \ \]
\[\text{\ \ \ \ \ \ \ \ }arctg\ 2 + \pi n.\]
\[4)\ 3\cos{2x} + \sin^{2}x + 5\sin x \bullet \cos x = 0;\]
\[3 - 2\ tg^{2}x + 5\ tg\ x = 0\]
\[y = tg\ x:\]
\[3 - 2y^{2} + 5y = 0\]
\[2y^{2} - 5y - 3 = 0\]
\[D = 25 + 24 = 49\]
\[y_{1} = \frac{5 - 7}{2 \bullet 2} = - \frac{1}{2};\]
\[y_{2} = \frac{5 + 7}{2 \bullet 2} = 3.\]
\[1)\ tg\ x = - \frac{1}{2}\]
\[x = - arctg\frac{1}{2} + \pi n.\]
\[2)\ tg\ x = 3\]
\[x = arctg\ 3 + \pi n.\]
\[Ответ:\ - arctg\frac{1}{2} + \pi n;\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }arctg\ 3 + \pi n.\]