\[\boxed{\mathbf{599}\mathbf{.}}\]
\[\arcsin a = x,\ если\sin x = a\ \ и\ \]
\[- \frac{\pi}{2} \leq x \leq \frac{\pi}{2};\]
\[a - положительное\ число:\]
\[\sin\left( \arcsin a \right) = \sin x = a;\]
\[\sin\left( \arcsin( - a) \right) =\]
\[= \sin\left( - \arcsin(a) \right) = \sin( - x) =\]
\[= - \sin x = - a.\]
\[1)\sin\left( \arcsin\frac{1}{7} \right) = \frac{1}{7}\]
\[2)\sin\left( \arcsin\left( - \frac{1}{5} \right) \right) = - \frac{1}{5}\]
\[3)\sin\left( \pi + \arcsin\frac{3}{4} \right) =\]
\[= - \sin\left( \arcsin\frac{3}{4} \right) = - \frac{3}{4}\]
\[4)\cos\left( \frac{3\pi}{2} - \arcsin\frac{1}{3} \right) =\]
\[= - \sin\left( \arcsin\frac{1}{3} \right) = - \frac{1}{3}\]
\[5)\cos\left( \arcsin\frac{4}{5} \right) =\]
\[= \sqrt{1 - \sin^{2}\left( \arcsin\frac{4}{5}\ \right)} =\]
\[= \sqrt{1 - \left( \frac{4}{5} \right)^{2}} = \sqrt{\frac{25}{25} - \frac{16}{25}} =\]
\[= \sqrt{\frac{9}{25}} = \frac{3}{5}\]
\[6)\ tg\left( \arcsin\frac{1}{\sqrt{10}} \right) =\]
\[= \frac{\sin\left( \arcsin\frac{1}{\sqrt{10}} \right)}{\cos\left( \arcsin\frac{1}{\sqrt{10}} \right)} =\]
\[= \frac{\frac{1}{\sqrt{10}}}{\sqrt{1 - \sin^{2}\left( \arcsin\frac{1}{\sqrt{10}} \right)}} =\]
\[= \frac{1}{\sqrt{10}}\ :\ \sqrt{1 - \frac{1}{10}} = \frac{1}{\sqrt{10}}\ :\ \sqrt{\frac{9}{10}} =\]
\[= \frac{1}{\sqrt{10}} \bullet \frac{\sqrt{10}}{3} = \frac{1}{3}\]