\[\boxed{\mathbf{596}\mathbf{.}}\]
\[1)\ \left( 4\sin x - 3 \right)\left( 2\sin x + 1 \right) = 0\]
\[1)\ 4\sin x - 3 = 0\]
\[4\sin x = 3\]
\[\sin x = \frac{3}{4}\]
\[x = ( - 1)^{n} \bullet \arcsin\frac{3}{4} + \pi n\]
\[2)\ 2\sin x + 1 = 0\]
\[\sin x = - 1\]
\[\sin x = - \frac{1}{2}\]
\[x = ( - 1)^{n + 1} \bullet \arcsin\frac{1}{2} + \pi n\]
\[x = ( - 1)^{n + 1} \bullet \frac{\pi}{6} + \pi n\]
\[Ответ:\ \ \]
\[x = ( - 1)^{n} \bullet \arcsin\frac{3}{4} + \pi n;\]
\[x = \ ( - 1)^{n + 1} \bullet \frac{\pi}{6} + \pi n.\]
\[2)\ \left( 4\sin{3x} - 1 \right)\left( 2\sin x + 3 \right) = 0\]
\[1)\ 4\sin{3x} - 1 = 0\]
\[4\sin{3x} = 1\]
\[\sin{3x} = \frac{1}{4}\]
\[3x = ( - 1)^{n} \bullet \arcsin\frac{1}{4} + \pi n\]
\[x = ( - 1)^{n} \bullet \frac{1}{3}\arcsin\frac{1}{4} + \frac{\text{πn}}{3}\]
\[2)\ 2\sin x + 3 = 0\]
\[2\sin x = - 3\]
\[\sin x = - \frac{3}{2}\]
\[корней\ нет\]
\[Ответ:\ \]
\[x = ( - 1)^{n} \bullet \frac{1}{3}\arcsin\frac{1}{4} + \frac{\text{πn}}{3}.\]