\[\boxed{\mathbf{592}\mathbf{.}}\]
\[1)\sin{4x} \bullet \cos{2x} = \cos{4x} \bullet \sin{2x}\]
\[\sin{4x} \bullet \cos{2x} - \sin{2x} \bullet \cos{4x} =\]
\[= 0\]
\[\sin(4x - 2x) = 0\]
\[\sin{2x} = 0\]
\[2x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{2} \bullet \pi n\]
\[x = \frac{\text{πn}}{2}.\]
\[Ответ:\ \ x = \frac{\text{πn}}{2}.\]
\[2)\cos{2x} \bullet \sin{3x} = \sin{2x} \bullet \cos{3x}\]
\[\sin{3x} \bullet \cos{2x} - \sin{2x} \bullet \cos{3x} =\]
\[= 0\]
\[\sin(3x - 2x) = 0\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n\]
\[x = \pi n\]
\[Ответ:\ \ x = \pi n.\]