\[\boxed{\mathbf{576}\mathbf{.}}\]
\[1)\cos^{2}{2x} = 1 + \sin^{2}{2x}\]
\[\cos^{2}{2x} - \sin^{2}{2x} = 1\]
\[\cos{4x} = 1\]
\[4x = \arccos 1 + 2\pi n =\]
\[= 0 + 2\pi n = 2\pi n\]
\[x = \frac{2\pi n}{4}\]
\[x = \frac{\text{πn}}{2}\]
\[Ответ:\ \ x = \frac{\text{πn}}{2}.\]
\[2)\ 4\cos^{2}x = 3\]
\[\cos^{2}x = \frac{3}{4}\]
\[\cos x = \pm \frac{\sqrt{3}}{2}\]
\[x_{1} = \pm \left( \pi - \arccos\frac{\sqrt{3}}{2} \right) + 2\pi n =\]
\[= \pm \left( \pi - \frac{\pi}{6} \right) + 2\pi n =\]
\[= \pm \frac{5\pi}{6} + 2\pi n\]
\[x_{2} = \pm \arccos\frac{\sqrt{3}}{2} + 2\pi n =\]
\[= \pm \frac{\pi}{6} + 2\pi n\]
\[Ответ:\ x = \pm \frac{\pi}{6} + \pi n.\]
\[3)\ 2\cos^{2}x = 1 + 2\sin^{2}x\]
\[2\cos^{2}x - 2\sin^{2}x = 1\]
\[2\left( \cos^{2}x - \sin^{2}x \right) = 1\]
\[\cos{2x} = \frac{1}{2}\]
\[2x = \pm \arccos\frac{1}{2} + 2\pi n =\]
\[= \pm \frac{\pi}{3} + 2\pi n\]
\[x = \frac{1}{2} \bullet \left( \pm \frac{\pi}{3} + 2\pi n \right)\]
\[x = \pm \frac{\pi}{6} + \pi n\]
\[Ответ:\ x = \pm \frac{\pi}{6} + \pi n.\]
\[4)\ 2\sqrt{2}\cos^{2}x = 1 + \sqrt{2}\]
\[2\sqrt{2}\cos^{2}x - \sqrt{2} = 1\]
\[\sqrt{2}\left( 2\cos^{2}x - 1 \right) = 1\]
\[1 + \cos{2x} - 1 = \frac{1}{\sqrt{2}}\]
\[\cos{2x} = \frac{1}{\sqrt{2}}\]
\[2x = \pm \arccos\frac{1}{\sqrt{2}} + 2\pi n =\]
\[= \pm \frac{\pi}{4} + 2\pi n\]
\[x = \frac{1}{2} \bullet \left( \pm \frac{\pi}{4} + 2\pi n \right)\]
\[x = \pm \frac{\pi}{8} + \pi n\]
\[Ответ:\ x = \pm \frac{\pi}{8} + \pi n.\]
\[5)\ \left( 1 + \cos x \right)\left( 3 - 2\cos x \right) = 0\]
\[1)\ 1 + \cos x = 0\]
\[\cos x = - 1\]
\[x = \left( \pi - \arccos 1 \right) + 2\pi n\]
\[x = \pi + 2\pi n.\]
\[2)\ 3 - 2\cos x = 0\]
\[2\cos x = 3\]
\[\cos x = 1,5\]
\[корней\ нет.\]
\[Ответ:\ x = \ \pi + 2\pi n.\]
\[6)\ \left( 1 - \cos x \right)\left( 4 + 3\cos x \right) = 0\]
\[1)\ 1 - \cos x = 0\]
\[\cos x = 1\]
\[x = \arccos 1 + 2\pi n\]
\[x = 0 + 2\pi n = 2\pi n.\]
\[2)\ 4 + 3\cos x = 0\]
\[3\cos x = - 4\]
\[\cos x = - \frac{4}{3}\]
\[корней\ нет.\]
\[Ответ:\ \ x = 2\pi n.\]
\[7)\ \left( 1 + 2\cos x \right)\left( 1 - 3\cos x \right) = 0\]
\[1)\ 1 + 2\cos x = 0\]
\[2\cos x = - 1\]
\[\cos x = - \frac{1}{2}\]
\[x = \pm \left( \pi - \arccos\frac{1}{2} \right) + 2\pi n =\]
\[= \pm \left( \pi - \frac{\pi}{3} \right) + 2\pi n\]
\[x = \pm \frac{2\pi}{3} + 2\pi n.\]
\[2)\ 1 - 3\cos x = 0\]
\[3\cos x = 1\]
\[\cos x = \frac{1}{3}\]
\[x = \pm \arccos\frac{1}{3} + 2\pi n\]
\[Ответ:\ x = \pm \frac{2\pi}{3} + 2\pi n;\ \]
\[x = \pm \arccos\frac{1}{3} + 2\pi n.\]
\[8)\ \left( 1 - 2\cos x \right)\left( 2 + 3\cos x \right) = 0\ \]
\[1)\ 1 - 2\cos x = 0\]
\[2\cos x = 1\]
\[\cos x = \frac{1}{2}\]
\[x = \pm \arccos\frac{1}{2} + 2\pi n\]
\[x = \pm \frac{\pi}{3} + 2\pi n.\]
\[2)\ 2 + 3\cos x = 0\]
\[3\cos x = - 2\]
\[\cos x = - \frac{2}{3}\]
\[x = \pm \left( \pi - \arccos\frac{2}{3} \right) + 2\pi n\]
\[Ответ:\ x = \pm \frac{\pi}{3} + 2\pi n;\ \]
\[x = \pm \left( \pi - \arccos\frac{2}{3} \right) + 2\pi n.\]