\[\boxed{\mathbf{564}\mathbf{.}}\]
\[\frac{\sin a + \sin{3a} + \sin{5a}}{\cos a + \cos{3a} + \cos{5a}} = tg\ 3a\]
\[\frac{2 \bullet \sin\frac{6a}{2} \bullet \cos\left( - \frac{4a}{2} \right) + \sin{3a}}{2 \bullet \cos\frac{6a}{2} \bullet \cos{\left( - \frac{4a}{2} \right) + \cos{3a}}} =\]
\[= tg\ 3a\]
\[\frac{2 \bullet \sin{3a} \bullet \cos{2a} + \sin{3a}}{2 \bullet \cos{3a} \bullet \cos{2a} + \cos{3a}} =\]
\[= tg\ 3a\]
\[\frac{\sin{3a} \bullet \left( 2\cos{2a} + 1 \right)}{\cos{3a} \bullet \left( 2\cos{2a} + 1 \right)} = tg\ 3a\]
\[\frac{\sin{3a}}{\cos{3a}} = tg\ 3a\]
\[tg\ 3a = tg\ 3a\]
\[Что\ и\ требовалось\ доказать.\]