\[\boxed{\mathbf{559}\mathbf{.}}\]
\[1)\ \frac{1 - \cos a + \cos{2a}}{\sin{2a} - \sin a} = ctg\ a\]
\[\frac{2\cos^{2}a - \cos a}{2\sin a \bullet \cos a - \sin a} = ctg\ a\]
\[\frac{\cos a \bullet \left( 2\cos a - 1 \right)}{\sin a \bullet \left( 2\cos a - 1 \right)} = ctg\ a\]
\[\frac{\cos a}{\sin a} = ctg\ a\]
\[ctg\ a = ctg\ a\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ \frac{\sin a + \sin\frac{a}{2}}{1 + \cos a + \cos\frac{a}{2}} = tg\frac{a}{2}\]
\[\frac{2\sin\frac{a}{2} \bullet \cos\frac{a}{2} + \sin\frac{a}{2}}{2\cos^{2}\frac{a}{2} + \cos\frac{a}{2}} = tg\frac{a}{2}\]
\[\frac{\sin\frac{a}{2} \bullet \left( 2\cos\frac{a}{2} + 1 \right)}{\cos\frac{a}{2} \bullet \left( 2\cos\frac{a}{2} + 1 \right)} = tg\frac{a}{2}\]
\[\frac{\sin\frac{a}{2}}{\cos\frac{a}{2}} = tg\frac{a}{2}\]
\[\text{tg}\frac{a}{2} = tg\frac{a}{2}\]
\[Что\ и\ требовалось\ доказать.\]