\[\boxed{\mathbf{556}\mathbf{.}}\]
\[1)\sin{35{^\circ}} + \sin{25{^\circ}} = \cos{5{^\circ}}\]
\[2 \bullet \sin\frac{35{^\circ} + 25{^\circ}}{2} \bullet \cos\frac{35{^\circ} - 25{^\circ}}{2} =\]
\[= \cos{5{^\circ}}\]
\[2 \bullet \sin\frac{60{^\circ}}{2} \bullet \cos\frac{10{^\circ}}{2} = \cos{5{^\circ}}\]
\[2 \bullet \sin{30{^\circ}} \bullet \cos{5{^\circ}} = \cos{5{^\circ}}\]
\[2 \bullet \frac{1}{2} \bullet \cos{5{^\circ}} = \cos{5{^\circ}}\]
\[\cos{5{^\circ}} = \cos{5{^\circ}}\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\cos{12{^\circ}} - \cos{48{^\circ}} = \sin{18{^\circ}}\]
\[- 2 \bullet \sin\frac{60{^\circ}}{2} \bullet \sin\left( - \frac{36{^\circ}}{2} \right) =\]
\[= \sin{18{^\circ}}\]
\[2 \bullet \sin{30{^\circ}} \bullet \sin{18{^\circ}} = \sin{18{^\circ}}\]
\[2 \bullet \frac{1}{2} \bullet \sin{18{^\circ}} = \sin{18{^\circ}}\]
\[\sin{18{^\circ}} = \sin{18{^\circ}}\]
\[Что\ и\ требовалось\ доказать.\]