\[\boxed{\mathbf{545}\mathbf{.}}\]
\[1)\ 1 - \cos a + \sin a =\]
\[= 2\sin^{2}\frac{a}{2} + 2\sin\frac{a}{2} \bullet \cos\frac{a}{2} =\]
\[= 2\sin\frac{a}{2} \bullet \left( \sin\frac{a}{2} + \cos\frac{a}{2} \right) =\]
\[= 4 \bullet \sin\frac{a}{2} \bullet \sin\left( \frac{a}{2} + \frac{\pi}{4} \right) \bullet \frac{\sqrt{2}}{2} =\]
\[= 2\sqrt{2} \bullet \sin\frac{a}{2} \bullet \sin\left( \frac{a}{2} + \frac{\pi}{4} \right)\]
\[2)\ 1 - 2\cos a + \cos{2a} =\]
\[= 2\cos^{2}a - 2\cos a =\]
\[= 2\cos a \bullet \left( \cos a - 1 \right) =\]
\[= 2\cos a \bullet \left( - 2\sin^{2}\frac{a}{2} \right) =\]
\[= - 4\cos a \bullet \sin^{2}\frac{a}{2}\]
\[3)\ 1 + \sin a - \cos a - tg\ a =\]
\[= \frac{\left( \cos a - \sin a \right)\left( 1 - \cos a \right)}{\cos a} =\]
\[= (1 - tg\ a)\left( 1 - \cos a \right)\]
\[4)\ 1 + \sin a + \cos a + tg\ a =\]
\[= \frac{\left( \cos a + \sin a \right)\left( 1 + \cos a \right)}{\cos a} =\]
\[= (1 + tg\ a)\left( 1 + \cos a \right)\]