\[\boxed{\mathbf{53}\mathbf{.}}\]
\[1)\ \sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}} = 2\]
\[\left( \sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}} \right)^{2} = 2^{2}\]
\[8 - 2\sqrt{16 - 4 \bullet 3} = 4\]
\[8 - 2\sqrt{16 - 12} = 4\]
\[8 - 2\sqrt{4} = 4\]
\[8 - 2 \bullet 2 = 4\]
\[8 - 4 = 4\]
\[4 = 4.\]
\[Тождество\ доказано.\]
\[2)\ \sqrt[3]{9 + \sqrt{80}} + \sqrt[3]{9 - \sqrt{80}} = 3\]
\[Пусть\ x =\]
\[= \sqrt[3]{9 + \sqrt{80}} + \sqrt[3]{9 - \sqrt{80}},\ тогда:\]
\[x^{3} = 18 + 3 \bullet 1 \bullet x\]
\[x^{3} - 3x - 18 = 0\]
\[(x - 3)\left( x^{2} + 3x + 6 \right) = 0\]
\[x - 3 = 0 \Longrightarrow \ x = 3.\]
\[3 = 3.\]
\[Тождество\ доказано.\]