\[\boxed{\mathbf{512}\mathbf{.}}\]
\[1)\sin{2x} - 2\cos x = 0\]
\[2\sin x\cos x - 2\cos x = 0\]
\[2\cos x\left( \sin x - 1 \right) = 0\]
\[1)\ 2\cos x = 0\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[2)\ \sin x - 1 = 0\]
\[\sin x = 1\]
\[x = \arcsin 1 + 2\pi n\]
\[x = \frac{\pi}{2} + 2\pi n\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n.\]
\[2)\cos{2x} + \sin^{2}x = 1\]
\[\cos^{2}x - \sin^{2}x + \sin^{2}x = 1\]
\[\cos^{2}x = 1\]
\[\cos x = \pm 1\]
\[x_{1} = \pi - \arccos 1 + 2\pi n =\]
\[= \pi + 2\pi n\]
\[x_{2} = \arccos 1 + 2\pi n\]
\[x = 2\pi n\]
\[Ответ:\ \ \pi n.\]
\[3)\ 4\cos x = \sin{2x}\]
\[4\cos x - \sin{2x} = 0\]
\[4\cos x - 2\sin x \bullet \cos x = 0\]
\[2\cos x\left( 2 - \sin x \right) = 0\]
\[1)\ 2\cos x = 0\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n\]
\[x = \frac{\pi}{2} + \pi n\]
\[2)\ 2 - \sin x = 0\]
\[\sin x = 2\]
\[корней\ нет\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n.\]
\[4)\sin^{2}x = - \cos{2x}\]
\[\sin^{2}x + \cos{2x} = 0\]
\[\sin^{2}x + \cos^{2}x - \sin^{2}x = 0\]
\[\cos^{2}x = 0\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n\]
\[x = \frac{\pi}{2} + \pi n\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n.\]
\[5)\sin{\frac{x}{2}\cos\frac{x}{2}} + \frac{1}{2} = 0\]
\[\frac{1}{2} \bullet 2\sin\frac{x}{2}\cos\frac{x}{2} + \frac{1}{2} = 0\]
\[\frac{1}{2}\sin\left( 2 \bullet \frac{x}{2} \right) + \frac{1}{2} = 0\]
\[\frac{1}{2}\sin x = - \frac{1}{2}\]
\[\sin x = - 1\]
\[x = - \arcsin 1 + 2\pi n\]
\[x = - \frac{\pi}{2} + 2\pi n\]
\[Ответ:\ - \frac{\pi}{2} + 2\pi n.\]
\[6)\cos^{2}\frac{x}{2} = \sin^{2}\frac{x}{2}\]
\[\cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2} = 0\]
\[\cos\left( 2 \bullet \frac{x}{2} \right) = 0\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n\]
\[x = \frac{\pi}{2} + \pi n\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n.\]