\[\boxed{\mathbf{510}\mathbf{.}}\]
\[1)\ \frac{\cos{2a}}{\sin a \bullet \cos a + \sin^{2}a} =\]
\[= ctg\ a - 1\]
\[\frac{\cos^{2}a - \sin^{2}a}{\sin a\left( \cos a + \sin a \right)} = ctg\ a - 1\]
\[\frac{\left( \cos a - \sin a \right)\left( \cos a + \sin a \right)}{\sin a\left( \cos a + \sin a \right)} =\]
\[= ctg\ a - 1\]
\[\frac{\cos a - \sin a}{\sin a} = ctg\ a - 1\]
\[\frac{\cos a}{\sin a} - 1 = ctg\ a - 1\]
\[ctg\ a - 1 = ctg\ a - 1\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ \frac{\sin{2a} - 2\cos a}{\sin a - \sin^{2}a} = - 2\ ctg\ a\]
\[\frac{2\sin a \bullet \cos a - 2\cos a}{\sin a\left( 1 - \sin a \right)} =\]
\[= - 2\ ctg\ a\]
\[\frac{2\cos a\left( \sin a - 1 \right)}{- \sin a\left( \sin a - 1 \right)} = - 2\ ctg\ a\]
\[- 2 \bullet \frac{\cos a}{\sin a} = - 2\ ctg\ a\]
\[- 2\ ctg\ a = - 2\ ctg\ a\]
\[Что\ и\ требовалось\ доказать.\]
\[3)\ tg\ a\ \left( 1 + \cos{2a} \right) = \sin{2a}\]
\[tg\ a \bullet 2\cos^{2}a = \sin{2a}\]
\[\frac{\sin a}{\cos a} \bullet 2\cos^{2}a = \sin{2a}\]
\[2\sin a \bullet \cos a = \sin{2a}\]
\[\sin{2a} = \sin{2a}\]
\[Что\ и\ требовалось\ доказать.\]
\[4)\ \frac{1 - \cos{2a} + \sin{2a}}{1 + \cos{2a} + \sin{2a}} \bullet ctg\ a =\]
\[= 1\]
\[\frac{2\sin^{2}a + 2\sin a \bullet \cos a}{2\cos^{2}a + 2\sin a \bullet \cos a} \bullet ctg\ a =\]
\[= 1\]
\[\frac{2\sin a \bullet \left( \sin a + \cos a \right)}{2\cos a \bullet \left( \cos a + \sin a \right)} \bullet ctg\ a =\]
\[= 1\]
\[\frac{\sin a}{\cos a} \bullet \frac{\cos a}{\sin a} = 1\]
\[1 = 1\]
\[Что\ и\ требовалось\ доказать.\]
\[5)\ \frac{\left( 1 - 2\cos^{2}a \right)\left( 2\sin^{2}a - 1 \right)}{4\sin^{2}\text{\ a} \bullet \cos^{2}a} =\]
\[= \text{ct}g^{2}\ 2a\]
\[\frac{\left( - \cos{2a} \right)\left( - \cos{2a} \right)}{\sin^{2}{2a}} = ctg^{2}\ 2a\]
\[\frac{\cos^{2}{2a}}{\sin^{2}{2a}} = ctg^{2}\ 2a\]
\[\text{ct}g^{2}\ 2a = ctg^{2}\ 2a\]
\[Что\ и\ требовалось\ доказать.\]
\[6)\ 1 - 2\sin^{2}\left( \frac{\pi}{4} - \frac{a}{2} \right) = \sin a\]
\[\cos^{2}\left( \frac{\pi}{4} - \frac{a}{2} \right) - \sin^{2}\left( \frac{\pi}{4} - \frac{a}{2} \right) =\]
\[= \sin a\]
\[\cos\left( 2 \bullet \left( \frac{\pi}{4} - \frac{a}{2} \right) \right) = \sin a\]
\[\cos\left( \frac{\pi}{2} - a \right) = \sin a\]
\[\sin a = \sin a\]
\[Что\ и\ требовалось\ доказать.\]
\[7)\ \frac{\sin a + \sin{2a}}{1 + \cos a + \cos{2a}} = tg\ a\]
\[\frac{\sin a\left( 1 + 2\cos a \right)}{\cos a + 2\cos^{2}a} = tg\ a\]
\[\frac{\sin a\left( 1 + 2\cos a \right)}{\cos a\left( 1 + 2\cos a \right)} = tg\ a\]
\[\frac{\sin a}{\cos a} = tg\ a\]
\[tg\ a = tg\ a\]
\[Что\ и\ требовалось\ доказать.\]