\[\boxed{\mathbf{497.}}\]
\[\cos(6x - 5x) = - 1\]
\[\cos x = - 1\]
\[точка\ на\ окружности:\]
\[( - 1;\ 0).\]
\[\text{x\ }принимает\ значение:\]
\[x = \pi + 2\pi k\]
\[Ответ:\ \ x = \pi + 2\pi k.\]
\[\sin(3x - 5x) = - 1\]
\[\sin( - 2x) = - 1\]
\[- \sin{2x} = - 1\]
\[\sin{2x} = 1\]
\[точка\ на\ окружности:\]
\[(0;\ 1).\]
\[\text{x\ }принимает\ значение:\]
\[2x = \frac{\pi}{2} + 2\pi k\]
\[x = \frac{\pi}{4} + \pi k\]
\[Ответ:\ \ x = \frac{\pi}{4} + \pi k.\]
\[3)\ \sqrt{2}\cos\left( \frac{\pi}{4} + x \right) - \cos x = 1\]
\[\sqrt{2} \bullet \frac{\sqrt{2}}{2}\left( \cos x - \sin x \right) - \cos x =\]
\[= 1\]
\[\cos x - \sin x - \cos x = 1\]
\[- \sin x = 1\]
\[\sin x = - 1\]
\[точка\ на\ окружности:\]
\[(0;\ - 1).\]
\[\text{\ x\ }принимает\ значение:\]
\[x = - \frac{\pi}{2} + 2\pi k\]
\[Ответ:\ \ x = - \frac{\pi}{2} + 2\pi k.\]
\[4)\ \sqrt{2}\sin\left( \frac{\pi}{4} - \frac{x}{2} \right) + \sin\frac{x}{2} = 1\]
\[\sqrt{2} \bullet \frac{\sqrt{2}}{2} \bullet \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right) + \sin\frac{x}{2} =\]
\[= 1\]
\[\cos\frac{x}{2} - \sin\frac{x}{2} + \sin\frac{x}{2} = 1\]
\[\cos\frac{x}{2} = 1\]
\[точка\ на\ окружности:\]
\[(1;\ 0)\]
\[\text{x\ }принимает\ значение:\]
\[\frac{x}{2} = 0 + 2\pi k\ \]
\[x = 4\pi k\]
\[Ответ:\ \ x = 4\pi k.\]