\[\boxed{\mathbf{462.}}\]
\[\sin a = \frac{2\sqrt{10}}{11}\ и\ a - угол\ \]
\[прямоугольного\ \]
\[треугольника.\]
\[\ \ 0 < a < \frac{\pi}{2}\ \]
\[точка,полученная\ вращением,\ \]
\[принадлежит\ первой\ \]
\[четверти:\]
\[\cos a > 0\ \ и\ \ tg\ a > 0.\]
\[1)\ \cos a = \sqrt{1 - \sin^{2}a}\]
\[\cos a = \sqrt{1 - \left( \frac{2\sqrt{10}}{11} \right)^{2}} =\]
\[= \sqrt{\frac{121}{121} - \frac{40}{121}} = \sqrt{\frac{81}{121}} = \frac{9}{11}\]
\[2)\ tg\ a = \frac{\sin a}{\cos a}\]
\[tg\ a = \frac{2\sqrt{10}}{11}\ :\frac{9}{11} = \frac{2\sqrt{10}}{11} \bullet \frac{11}{9} =\]
\[= \frac{2\sqrt{10}}{9}\]
\[Ответ:\ \ \cos a = \frac{9}{11};\ \]
\[tg\ a = \frac{2\sqrt{10}}{9}.\]