\[\boxed{\mathbf{428.}}\]
\[1)\ \ \left( \frac{\sqrt{2}}{2};\ - \frac{\sqrt{2}}{2} \right):\]
\[Острый\ угол\ между\ радиусом\ \]
\[к\ точке\ P\ и\ осью\ Ox:\]
\[\left| - \frac{\sqrt{2}}{2} \right| = \frac{\sqrt{2}}{2}\ \ = > \ |x| = |y|\ = > \ \ \ \]
\[= > \ |a| = 45{^\circ}\]
\[Так\ как\ y < 0\ и\ x > 0,\ \]
\[то\ точка\ \text{P\ }лежит\ \]
\[в\ IV\ четверти:\]
\[a = - 45{^\circ} = - \frac{\pi \bullet 45}{180} = - \frac{\pi}{4}\]
\[Ответ:\ \ a = - \frac{\pi}{4} + 2\pi k.\]
\[2)\ \left( - \frac{\sqrt{2}}{2};\ - \frac{\sqrt{2}}{2} \right):\]
\[Острый\ угол\ между\ радиусом\ \]
\[к\ точке\ P\ и\ осью\ Ox:\]
\[|x| = |y|\ \ \ = > \ \ \ |a| = 45{^\circ}\]
\[Так\ как\ y < 0\ и\ x < 0,\ \]
\[то\ точка\ \text{P\ }лежит\ \]
\[в\ III\ четверти:\]
\[a = - 180{^\circ} + 45{^\circ} = 135{^\circ} =\]
\[= - \frac{\pi \bullet 135}{180} = - \frac{3\pi}{4}\]
\[Ответ:\ \ a = - \frac{3\pi}{4} + 2\pi k.\]
\[3)\ \left( - \frac{1}{2};\ - \frac{\sqrt{3}}{2} \right):\]
\[Острый\ угол\ между\ радиусом\ \]
\[к\ точке\ P\ и\ осью\ Ox:\]
\[\left| - \frac{1}{2} \right| = \frac{1}{2} = \frac{R}{2}\ \ \ = > \ \ \ \]
\[= > |x| = \frac{R}{2}\ \ \ = > \ \ \]
\[= > \ |a| = 90{^\circ} - 30{^\circ} = 60{^\circ}\]
\[Так\ как\ y < 0\ и\ x < 0,\ \]
\[то\ точка\ \text{P\ }лежит\ \]
\[в\ III\ четверти:\]
\[a = - 180{^\circ} + 60{^\circ} = - 120{^\circ} =\]
\[= - \frac{\pi \bullet 120}{180} = - \frac{2\pi}{3}\]
\[Ответ:\ \ a = - \frac{2\pi}{3} + 2\pi k.\]
\[4)\ \left( - \frac{\sqrt{3}}{2};\ - \frac{1}{2} \right):\]
\[Острый\ угол\ между\ радиусом\ \]
\[к\ точке\ P\ и\ осью\ Ox:\]
\[\left| - \frac{1}{2} \right| = \frac{1}{2} = \frac{R}{2}\ \ \ = > \ \ \ \]
\[= > |y| = \frac{R}{2}\ \ \ = > \ \ \ |a| = 30{^\circ}\]
\[Так\ как\ y < 0\ и\ x < 0,\ \]
\[то\ точка\ \text{P\ }лежит\ \]
\[в\ III\ четверти:\]
\[a = - 180{^\circ} + 30{^\circ} = - 150{^\circ} =\]
\[= - \frac{\pi \bullet 150}{180} = - \frac{5\pi}{6}\]
\[Ответ:\ \ a = - \frac{5\pi}{6} + 2\pi k.\]