\[\boxed{\mathbf{399}\mathbf{.}}\]
\[b_{1} + b_{2} + b_{3} = 62\]
\[b_{1} + b_{2} \bullet q + b_{3} \bullet q^{2} = 62\]
\[b_{1} \bullet \left( 1 + q + q^{2} \right) = 62\]
\[Сумма\ десятичных\ \]
\[логарифмов\ равна\ 3:\]
\[\lg b_{1} + \lg b_{2} + \lg b_{3} = 3\]
\[\lg\left( b_{1} \bullet b_{2} \bullet b_{3} \right) = 3\]
\[\lg\left( b_{1} \bullet b_{1} \bullet q \bullet b_{1} \bullet q^{2} \right) = 3\]
\[\lg\left( b_{1}q \right)^{3} = 3\]
\[3\lg\left( b_{1}q \right) = 3\]
\[\lg\left( b_{1}q \right) = 1\]
\[\lg\left( b_{1}q \right) = \lg 10\]
\[b_{1}q = 10\]
\[b_{1} = \frac{10}{q}.\]
\[Подставим\ значение\ b_{1}:\]
\[\frac{10\left( 1 + q + q^{2} \right)}{q} = 62\]
\[\frac{10 + 10q + 10q^{2} - 62q}{q} = 0\]
\[\frac{10q^{2} - 52q + 10}{q} = 0\]
\[10q^{2} - 52q + 10 = 0\]
\[D = 52^{2} - 4 \bullet 10 \bullet 10 =\]
\[= 2704 - 400 = 2304\]
\[q_{1} = \frac{52 - 48}{2 \bullet 10} = \frac{4}{20} = \frac{1}{5} = 0,2;\]
\[q_{2} = \frac{52 + 48}{2 \bullet 10} = \frac{100}{20} = 5.\]
\[1)\ b_{1} = \frac{10}{q} = \frac{10}{0,2} = 50;\]
\[b_{2} = b_{1} \bullet q = 50 \bullet 0,2 = 10;\]
\[b_{3} = b_{2} \bullet q = 10 \bullet 0,2 = 2.\]
\[2)\ b_{1} = \frac{10}{q} = \frac{10}{5} = 2;\]
\[b_{2} = b_{1} \bullet q = 2 \bullet 5 = 10;\]
\[b_{3} = b_{2} \bullet q = 10 \bullet 5 = 50.\]
\[Ответ:\ \ 2;\ 10;\ 50.\]