\[\boxed{\mathbf{393}\mathbf{.}}\]
\[1)\log_{\sqrt{2}}x + 4\log_{4}x + \log_{8}x =\]
\[= 13\]
\[\log_{2^{\frac{1}{2}}}x + 4\log_{2^{2}}x + \log_{2^{3}}x = 13\]
\[2\log_{2}x + 2\log_{2}x + \frac{1}{3}\log_{2}x =\]
\[= 13\]
\[\log_{2}x \bullet \left( 2 + 2 + \frac{1}{3} \right) = 13\]
\[\log_{2}x \bullet \left( \frac{6}{3} + \frac{6}{3} + \frac{1}{3} \right) = 13\]
\[\log_{2}x \bullet \frac{13}{3} = 13\]
\[\log_{2}x = 3\]
\[\log_{2}x = \log_{2}2^{3}\]
\[x = 2^{3} = 8\]
\[Ответ:\ \ x = 8.\]
\[2)\log_{0,5}(x + 2) - \log_{2}(x - 3) =\]
\[= \frac{1}{2}\log_{\frac{1}{\sqrt{2}}}( - 4x - 8)\]
\[имеет\ смысл\ при:\]
\[1)\ x + 2 > 0 \Longrightarrow x > - 2;\]
\[2)\ x - 3 > 0 \Longrightarrow x > 3;\]
\[3)\ - 4x - 8 > 0\]
\[- x - 2 > 0\]
\[x + 2 < 0\]
\[x < - 2.\]
\[Ответ:\ \ решений\ нет.\]