\[\boxed{\mathbf{341}\mathbf{.}}\]
\[1)\log_{7}(x - 1) \bullet \log_{7}x = \log_{7}x\]
\[\log_{7}x = 0\]
\[\log_{7}x = \log_{7}1\ \]
\[x = 1.\]
\[\log_{7}(x - 1) = 1\]
\[\log_{7}(x - 1) = \log_{7}7\]
\[x - 1 = 7\]
\[x = 8.\]
\[имеет\ смысл\ при:\]
\[x - 1 > 0\ \]
\[x > 1.\]
\[Ответ:\ \ x = 8.\]
\[2)\log_{\frac{1}{3}}x \bullet \log_{\frac{1}{3}}(3x - 2) =\]
\[= \log_{\frac{1}{3}}(3x - 2)\]
\[\log_{\frac{1}{3}}(3x - 2) = 0\]
\[\log_{\frac{1}{3}}(3x - 2) = \log_{\frac{1}{3}}1\]
\[3x - 2 = 1\]
\[3x = 3\]
\[x = 1.\]
\[\log_{\frac{1}{3}}x = 1\]
\[\log_{\frac{1}{3}}x = \log_{\frac{1}{3}}\frac{1}{3}\]
\[x = \frac{1}{3}.\]
\[имеет\ смысл\ при:\]
\[3x - 2 > 0\]
\[\ x > \frac{2}{3}.\]
\[Ответ:\ \ x = 1.\]
\[3)\log_{2}(3x + 1) \bullet \log_{3}x =\]
\[= 2\log_{2}(3x + 1)\]
\[\log_{2}(3x + 1) = 0\]
\[\log_{2}(3x + 1) = \log_{2}1\]
\[3x + 1 = 1\]
\[3x = 0\]
\[x = 0.\]
\[\log_{3}x = 2\]
\[\log_{3}x = \log_{3}3^{2}\]
\[x = 3^{2}\]
\[x = 9.\]
\[имеет\ смысл\ при:\]
\[3x + 1 > 0\]
\[x > - \frac{1}{3}\text{\ \ \ }и\ \ \ x > 0.\]
\[Ответ:\ \ x = 9.\]
\[4)\log_{\sqrt{3}}(x - 2) \bullet \log_{5}x =\]
\[= 2\log_{3}(x - 2)\]
\[\log_{3^{\frac{1}{2}}}(x - 2) \bullet \log_{5}x =\]
\[= 2\log_{3}(x - 2)\]
\[2\log_{3}(x - 2) \bullet \log_{5}x =\]
\[= 2\log_{3}(x - 2)\]
\[\log_{3}(x - 2) = 0\]
\[\log_{3}(x - 2) = \log_{3}1\]
\[x - 2 = 1\]
\[x = 3.\]
\[\log_{5}x = 1\]
\[\log_{5}x = \log_{5}5\]
\[x = 5.\]
\[имеет\ смысл\ при:\]
\[x - 2 > 0\ \]
\[x > 2.\]
\[Ответ:\ \ x_{1} = 3;\ \ x_{2} = 5.\]