\[\boxed{\mathbf{338}\mathbf{.}}\]
\[1)\lg(x - 1) - \lg(2x - 11) = \lg 2\]
\[\lg\frac{x - 1}{2x - 11} = \lg 2\]
\[\frac{x - 1}{2x - 11} = 2\]
\[x - 1 = 2(2x - 11)\]
\[x - 1 = 4x - 22\]
\[- 3x = - 21\]
\[x = 7.\]
\[имеет\ смысл\ при:\]
\[x - 1 > 0\]
\[x > 1.\]
\[2x - 11 > 0\]
\[x > 5,5.\]
\[Ответ:\ \ x = 7.\]
\[2)\lg(3x - 1) - \lg(x + 5) = \lg 5\]
\[\lg\frac{3x - 1}{x + 5} = \lg 5\]
\[\frac{3x - 1}{x + 5} = 5\]
\[3x - 1 = 5(x + 5)\]
\[3x - 1 = 5x + 25\]
\[- 2x = 26\ \]
\[x = - 13.\]
\[имеет\ смысл\ при:\]
\[3x - 1 > 0\ \]
\[x > \frac{1}{3}.\]
\[x + 5 > 0\]
\[\ x > - 5.\]
\[Ответ:\ \ нет\ решений.\]
\[3)\log_{3}\left( x^{3} - x \right) - \log_{3}x = \log_{3}3\]
\[\log_{3}\frac{x^{3} - x}{x} = \log_{3}3\]
\[\frac{x^{3} - x}{x} = 3\]
\[x^{3} - x = 3x\]
\[x^{3} - 4x = 0\]
\[x\left( x^{2} - 4 \right) = 0\]
\[(x + 2) \bullet x \bullet (x - 2) = 0\]
\[x_{1} = - 2,\ \ \ x_{2} = 0,\ \ \ x_{3} = 2.\]
\[имеет\ смысл\ при:\]
\[x^{3} - x > 0\]
\[x\left( x^{2} - 1 \right) > 0\]
\[(x + 1) \bullet x \bullet (x - 1) > 0\]
\[- 1 < x < 0;\ x > 1.\]
\[имеет\ смысл\ при:\]
\[x > 0.\]
\[Ответ:\ \ x = 2.\]