\[\boxed{\mathbf{318}\mathbf{.}}\]
\[1)\log_{3}\frac{6}{5}\text{\ \ }и\ \ \log_{3}\frac{5}{6}\]
\[\frac{6}{5} = \frac{36}{30}\text{\ \ }и\ \ \frac{5}{6} = \frac{25}{30}\]
\[Функция\ y = \log_{3}x\ \]
\[возрастает:\]
\[y\left( \frac{36}{30} \right) > y\left( \frac{25}{30} \right)\]
\[\log_{3}\frac{6}{5} > \log_{3}{\frac{5}{6}.}\]
\[2)\log_{\frac{1}{3}}9\text{\ \ }и\ \ \log_{\frac{1}{3}}17\]
\[Функция\ y = \log_{\frac{1}{3}}x\ убывает:\]
\[y(9) > y(17)\]
\[\log_{\frac{1}{3}}9 > \log_{\frac{1}{3}}17.\]
\[3)\log_{\frac{1}{2}}e\text{\ \ }и\ \ \log_{\frac{1}{2}}\pi\]
\[e \approx 2,72\ \ и\ \ \pi \approx 3,14\]
\[Функция\ y = \log_{\frac{1}{2}}x\ убывает:\]
\[y(2,72) > y(3,14)\]
\[\log_{\frac{1}{2}}e > \log_{\frac{1}{2}}\pi.\]
\[4)\log_{2}\frac{\sqrt{5}}{2}\text{\ \ }и\ \log_{2}\frac{\sqrt{3}}{2}\]
\[5 > 3\ \ \ = > \ \ \ \sqrt{5} > \sqrt{3}\ \ \ = > \ \ \ \]
\[= > \frac{\sqrt{5}}{2} > \frac{\sqrt{3}}{2}\]
\[Функция\ y = \log_{2}x\ \]
\[возрастает:\]
\[y\left( \frac{\sqrt{5}}{2} \right) > y\left( \frac{\sqrt{3}}{2} \right)\]
\[\log_{2}\frac{\sqrt{5}}{2} > \log_{2}\frac{\sqrt{3}}{2}.\]