\[\boxed{\mathbf{289}\mathbf{.}}\]
\[9^{x} + 9a(1 - a) \bullet 3^{x - 2} - a^{3} = 0\]
\[3^{2x} + 9a(1 - a) \bullet \frac{3^{x}}{9} - a^{3} = 0\]
\[3^{2x} + \left( a - a^{2} \right) \bullet 3^{x} - a^{3} = 0\]
\[Пусть\ y = 3^{x}:\]
\[y^{2} + \left( a - a^{2} \right) \bullet y - a^{3} = 0\]
\[D = \left( a - a^{2} \right)^{2} + 4 \bullet a^{3}\]
\[D = a^{2} - 2a^{3} + a^{4} + 4a^{3} =\]
\[= a^{2} + 2a^{3} + a^{4} = \left( a + a^{2} \right)^{2}\]
\[y = \frac{- \left( a - a^{2} \right) \pm \sqrt{\left( a + a^{2} \right)^{2}}}{2} =\]
\[= \frac{a^{2} - a \pm \left| a + a^{2} \right|}{2}\]
\[y_{1} = \frac{a^{2} - a - \left( a + a^{2} \right)}{2} =\]
\[= \frac{a^{2} - a - a - a^{2}}{2} = - \frac{2a}{2} = - a;\]
\[y_{2} = \frac{a^{2} - a + \left( a + a^{2} \right)}{2} =\]
\[= \frac{a^{2} - a + a + a^{2}}{2} = \frac{2a^{2}}{2} = a^{2}.\]
\[1)\ 3^{x} = - a\]
\[\log_{3}3^{x} = \log_{3}( - a)\]
\[x = \log_{3}( - a)\]
\[Выражение\ имеет\ смысл\ при:\]
\[- a > 0\]
\[a < 0.\]
\[2)\ 3^{x} = a^{2}\]
\[\log_{3}3^{x} = \log_{3}a^{2}\]
\[x = \log_{3}a^{2}\]
\[Выражение\ имеет\ смысл\ при:\]
\[a^{2} > 0\ \]
\[a \neq 0.\]
\[Значения\ совпадают\ при:\]
\[- a = a^{2}\]
\[a^{2} + a = 0\]
\[(a + 1)a = 0\]
\[a_{1} = - 1\ \ и\ \ a_{2} = 0\]
\[Ответ:\ \ если\ a < 0\ и\ a \neq - 1,\ \]
\[то\ \ x_{1} = \log_{3}a^{2},\ \ \ \]
\[x_{2} = \log_{3}( - a);\]
\[если\ a > 0\ и\ a = - 1,\ \]
\[то\ x = \log_{3}a^{2}.\]