\[\boxed{\mathbf{285}\mathbf{.}}\]
\[1)\ 2^{x} = 5\]
\[\log_{2}2^{x} = \log_{2}5\]
\[x = \log_{2}5.\]
\[2)\ {1,2}^{x} = 4\]
\[\log_{1,2}{1,2}^{x} = \log_{1,2}4\]
\[x = \log_{1,2}4.\]
\[3)\ 4^{2x + 3} = 5\]
\[\log_{4}4^{2x + 3} = \log_{4}5\]
\[2x + 3 = \log_{4}5\]
\[2x = \log_{4}5 - 3\]
\[x = \frac{1}{2}\left( \log_{4}5 - 3 \right).\]
\[4)\ 7^{1 - 2x} = 2\]
\[\log_{7}7^{1 - 2x} = \log_{7}2\]
\[1 - 2x = \log_{7}2\]
\[2x = 1 - \log_{7}2\]
\[x = \frac{1}{2}\left( 1 - \log_{7}2 \right).\]