\[\boxed{\mathbf{280}\mathbf{.}}\]
\[1)\ 9^{2\log_{3}5} = \left( 3^{2} \right)^{2\log_{3}5} =\]
\[= 3^{4\log_{3}5} = \left( 3^{\log_{3}5} \right)^{4} = 5^{4} =\]
\[= 625\]
\[2)\left( \frac{1}{9} \right)^{\frac{1}{2}\log_{3}4} = \left( 3^{- 2} \right)^{\frac{1}{2}\log_{3}4} =\]
\[= 3^{- \log_{3}4} = \left( 3^{\log_{3}4} \right)^{- 1} = 4^{- 1} =\]
\[= \frac{1}{4} = 0,25\]
\[3)\left( \frac{1}{4} \right)^{- 5\log_{2}3} = \left( 2^{- 2} \right)^{- 5\log_{2}3} =\]
\[= 2^{10\log_{2}3} = \left( 2^{\log_{2}3} \right)^{10} = 3^{10} =\]
\[= 59\ 049\]
\[4)\ 27^{- 4\log_{\frac{1}{3}}5} = \left( 3^{3} \right)^{- 4\log_{\frac{1}{3}}5} =\]
\[= 3^{- 12\log_{\frac{1}{3}}5} = \left( \frac{1}{3} \right)^{12\log_{\frac{1}{3}}5} =\]
\[= \left( \left( \frac{1}{3} \right)^{\log_{\frac{1}{3}}5} \right)^{12} = 5^{12}\]
\[5)\ 10^{3 - \log_{10}5} = \frac{10^{3}}{10^{\log_{10}5}} =\]
\[= \frac{1000}{5} = 200\]
\[6)\left( \frac{1}{7} \right)^{1 + 2\log_{\frac{1}{7}}3} = \frac{1}{7} \bullet \left( \frac{1}{7} \right)^{2\log_{\frac{1}{7}}3} =\]
\[= \frac{1}{7} \bullet \left( \left( \frac{1}{7} \right)^{\log_{\frac{1}{7}}3} \right)^{2} = \frac{1}{7} \bullet 3^{2} = \frac{9}{7} =\]
\[= 1\frac{2}{7}\]