\[\boxed{\mathbf{265}\mathbf{.}}\]
\[1)\ 3^{|x - 2|} < 9\]
\[3^{|x - 2|} < 3^{2}\]
\[|x - 2| < 2\]
\[\sqrt{(x - 2)^{2}} < 2\]
\[(x - 2)^{2} < 4\]
\[x^{2} - 4x + 4 < 4\]
\[x^{2} - 4x < 0\]
\[x(x - 4) < 0\]
\[0 < x < 4\]
\[Ответ:\ \ 0 < x < 4.\]
\[2)\ 4^{|x + 1|} > 16\ \]
\[4^{|x + 1|} > 4^{2}\ \]
\[|x + 1| > 2\ \]
\[\sqrt{(x + 1)^{2}} > 2\ \]
\[(x + 1)^{2} > 4\ \]
\[x^{2} + 2x + 1 > 4\ \]
\[x^{2} + 2x - 3 > 0\ \]
\[D = 2^{2} + 4 \bullet 3 = 4 + 12 = 16\]
\[x_{1} = \frac{- 2 - 4}{2} = - 3;\text{\ \ }\]
\[x_{2} = \frac{- 2 + 4}{2} = 1.\ \]
\[(x + 3)(x - 1) > 0\ \]
\[x < - 3;\text{\ \ }x > 1\ \]
\[Ответ:\ \ x < - 3;\ \ \ x > 1.\]
\[3)\ 2^{|x - 2|} > 4^{|x + 1|}\ \]
\[2^{|x - 2|} > 2^{2|x + 1|}\ \]
\[|x - 2| > 2|x + 1|\ \]
\[\sqrt{(x - 2)^{2}} > 2\sqrt{(x + 1)^{2}}\ \]
\[(x - 2)^{2} > 4(x + 1)^{2}\ \]
\[x^{2} - 4x + 4 > 4\left( x^{2} + 2x + 1 \right)\ \]
\[x^{2} - 4x + 4 > 4x^{2} + 8x + 4\ \]
\[3x^{2} + 12x < 0\ \]
\[x^{2} + 4x < 0\ \]
\[(x + 4)x < 0\ \]
\[- 4 < x < 0\ \]
\[Ответ:\ \ - 4 < x < 0.\]
\[4)\ 5^{|x + 4|} < 25^{|x|}\ \]
\[5^{|x + 4|} < 5^{2|x|}\ \]
\[|x + 4| < 2|x|\ \]
\[\sqrt{(x + 4)^{2}} < 2\sqrt{x^{2}}\ \]
\[(x + 4)^{2} < 4x^{2}\ \]
\[x^{2} + 8x + 16 < 4x^{2}\ \]
\[3x^{2} - 8x - 16 > 0\ \]
\[D = 8^{2} + 4 \bullet 3 \bullet 16 =\]
\[= 64 + 192 = 256\]
\[x_{1} = \frac{8 - 16}{2 \bullet 3} = - \frac{8}{6} = - \frac{4}{3} = - 1\frac{1}{3}\ \]
\[x_{2} = \frac{8 + 16}{2 \bullet 3} = \frac{24}{6} = 4\ \]
\[\left( x + 1\frac{1}{3} \right)(x - 4) > 0\ \]
\[x < - 1\frac{1}{3};\ \ x > 4\ \]
\[Ответ:\ \ x < - 1\frac{1}{3};\ \ \ x > 4.\]