\[\boxed{\mathbf{253}\mathbf{.}}\]
\[1)\ 3^{x - 2} > 9\ \]
\[3^{x - 2} > 3^{2}\ \]
\[x - 2 > 2\ \]
\[x > 4\ \]
\[Ответ:\ \ x > 4.\]
\[2)\ 5^{2x} < \frac{1}{25}\ \]
\[5^{2x} < \frac{1}{5^{2}}\ \]
\[5^{2x} < 5^{- 2}\ \]
\[2x < - 2\ \]
\[x < - 1\ \]
\[Ответ:\ \ x < - 1.\]
\[3)\ {0,7}^{x^{2} + 2x} < {0,7}^{3}\ \]
\[x^{2} + 2x > 3\ \]
\[x^{2} + 2x - 3 > 0\ \]
\[D = 2^{2} + 4 \bullet 3 = 4 + 12 = 16\]
\[x_{1} = \frac{- 2 - 4}{2} = - 3;\text{\ \ }\]
\[x_{2} = \frac{- 2 + 4}{2} = 1.\ \]
\[(x + 3)(x - 1) > 0\ \]
\[x < - 3\ \ и\ \ x > 1\ \]
\[Ответ:\ \ x < - 3\ \ \ x > 1.\]
\[4)\ \left( \frac{1}{3} \right)^{x^{2}} > \frac{1}{81}\ \]
\[\left( \frac{1}{3} \right)^{x^{2}} > \left( \frac{1}{3} \right)^{4}\ \]
\[x^{2} > 4\ \]
\[- 2 < x < 2\ \]
\[Ответ:\ \ - 2 < x < 2.\]