\[{\boxed{\mathbf{246}\mathbf{.}} }{1)\ 4^{- \sqrt{3}}\text{\ \ }и\ \ 4^{- \sqrt{2}}}\]
\[\sqrt{3} > \sqrt{2}\]
\[- \sqrt{3} < - \sqrt{2}\]
\[4^{- \sqrt{3}} < 4^{- \sqrt{2}}.\]
\[2)\ 2^{\sqrt{3}}\text{\ \ }и\ \ 2^{1,7}\]
\[300 > 289\]
\[\sqrt{300} > 17\]
\[\sqrt{3} > 1,7\]
\[2^{\sqrt{3}} > 2^{1,7}.\]
\[3)\ \left( \frac{1}{2} \right)^{1,4}\text{\ \ }и\ \ \left( \frac{1}{2} \right)^{\sqrt{2}}\]
\[196 < 200\]
\[14 < \sqrt{200}\]
\[1,4 < \sqrt{2}\]
\[\left( \frac{1}{2} \right)^{1,4} > \left( \frac{1}{2} \right)^{\sqrt{2}}.\]
\[4)\ \left( \frac{1}{9} \right)^{\pi}\text{\ \ }и\ \ \left( \frac{1}{9} \right)^{3,14}\]
\[\pi \approx 3,1415\ldots\]
\[\pi > 3,14\]
\[\left( \frac{1}{9} \right)^{\pi} < \left( \frac{1}{9} \right)^{3,14}.\]